
ns-2 for the impatient

Imad Aad, Mohammad Hossein Manshaei, and Jean-Pierre Hubaux

EPFL
Lausanne, Switzerland

[hossein.manshaei, jean-pierre.hubaux]@epfl.ch
March, 2009

1. INTRODUCTION
This document is a quick tutorial on ns-2 [4]. It introduces the basic
simulation aspects of wireless networking. Other detailed tutorials
and documentation can be found in [4, 2, 3]. We assume the reader
is using a Linux machine (on which ns is already installed) and is
familiar with common Linux basics.

Here are some conventions used throughout this document:

• ˜ns/ is the ns directory (.../ns-allinone-2.33/)

• Templates for the examples in this tutorial, can be found in
˜ns/quick-tutorial/.

• This document can be found in
˜ns/quick-tutorial/quick-tutorial.pdf

• If you need to go into more details, you can find the complete
ns Manual in
˜ns/quick-tutorial/ns-manual.pdf

ns is written in tcl and in C++. We use tcl to configure the topology,
the nodes, the channel, to schedule the events, etc. C++ is used to
implement the protocols (have a look at the 802.11 implementa-
tion in ˜ns/ns-2.33/mac/mac-802_11.[cc,h]). We will
be using tcl scripts in this tutorial, without having to use the C++
implementations (to modify the protocols for example). Other in-
dependent tools will be needed to filter, compute and display the
results.

Before starting, you should reinstall the tutorial scripts: go to ˜ns/
and run: ./tutorial-install.sh.

2. A VERY SIMPLE SCENARIO: A “PURE”
AD HOC NETWORK OF 6 NODES

Let us first start by showing the result of this example scenario, then
we will explain the way to go there. Go to ˜ns/quick-tutorial/
and run: ns ex6sta.tcl.

You will see a graph popping up, with 3 curves on it (Figure 1): the
throughputs of 3 nodes when they contend to access the channel to
send UDP packets to 3 others. They start at t1 = 20s, t2 = 60s
and t3 = 100s respectively. Simulation stops at t4 = 150.

Let us have a close look at ex6sta.tcl. The nodes
(WT(1) ... WT(6)) are created then positioned as follows (Fig-
ure 2):

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 50 100 150 200

T
hr

ou
gh

pu
t (

bi
ts

/s
)

Time (s)

"out2.xgr"
"out4.xgr"
"out6.xgr"

Figure 1: Throughputs of nodes WT(1), WT(3) and WT(5)

for {set i 1} {$i <= $opt(nn)} {incr i} {
set WT($i) [$ns_ node $i]

}

proc coord_proc {a} {
return [expr 10 * $a]

}

for {set i 1} {$i <= $opt(nn)} {incr i} {
$WT($i) set X_ [coord_proc $i]
$WT($i) set Y_ [coord_proc $i]
$WT($i) set Z_ 0.0

}

40 60 80 10020

20

40

60

80

100

1

2

3

4

5

6

Figure 2: The ad hoc network topology

Like all the array variables opt() used throughout the script, opt(nn)

1

is defined (=6) at the beginning of ex6sta.tcl. coord_proc
is a procedure we define to compute the values to be assigned to
X , Y (coordinates) of each node WT(i). ns-2 does not take the
Z elevation into consideration (flat 2-D topologies only).

We use CBR (constant bit rate) sources, over UDP layers, that we
attach to nodes WT(1),WT(3) and WT(5):

for {set i 1} {$i < $opt(nn)} {incr i 2} {
set udp($i) [new Agent/UDP]
$ns_ attach-agent $WT($i) $udp($i)

set sink($i) [new Agent/Null]
$ns_ attach-agent $WT([expr $i +1]) $sink($i)
$ns_ connect $udp($i) $sink($i)

set cbr($i) [new Application/Traffic/CBR]
$cbr($i) set packetSize_ 1000
$cbr($i) set interval_ 0.005
$cbr($i) attach-agent $udp($i)

$ns_ at [expr 20.0 * $i] "$cbr($i) start"
$ns_ at $opt(stop) "$cbr($i) stop"

}

For a UDP source in WT(i) we place a “sink” at WT(i+1) to re-
ceive the packets. Each CBR source sends 1000-Bytes packets
each 5ms, therefore it can occupy alone the total the channel ca-
pacity (2 Mbits/s in this example). We schedule the sources to start
at t1 = 20s, t2 = 60s and t3 = 100s respectively, and to stop at
t4 = 150s.

Lower layers of Mobile nodes are configured as follows:

$ns_ node-config -adhocRouting DumbAgent \
-llType LL \
-macType Mac/802_11 \
-ifqType Queue/DropTail/PriQueue \
-ifqLen 50 \
-antType Antenna/OmniAntenna \
-propType Propagation/FreeSpace \
-phyType Phy/WirelessPhy \
-channelType Channel/WirelessChannel \
-topoInstance $topo \

adhocRouting specifies which ad hoc routing protocol to use
(DSR, DSDV, AODV). Since all nodes are in the same collision
domain, no ad hoc routing protocol is needed. ifqLen is the in-
terface queue size. It has large influence on packet delays and drop
rate. We use FreeSpace as a propagation model, which assumes
there is a a single line of sight between senders and receivers (no
radio wave reflections). More complex propagation models include
TwoRayGround and Shadowing.

We consider a 100m× 100m topology
($topo load_flatgrid $opt(x) $opt(y)). The default
communication range of 802.11 nodes in ns-2 is 240m. Therefore
all 6 (=opt(nn)) nodes considered here are within receive range
of each other.

We define what traces should be put in the trace file (out.tr):

-agentTrace ON \
-routerTrace OFF \
-macTrace OFF \
-movementTrace OFF

agent traces are the ones written by traffic sources/destinations.
Router traces are written by packet forwarders. MAC traces are
written by each node’s MAC. Nodes’ movements can be traced by
switching movementTrace ON (we don’t need it for the mo-
ment).

We use the basic mode (no RTS/CTS,
i.e. Mac/802_11 set RTSThreshold_ 3000), and the chan-
nel capacity is set to 2Mbps
(Mac/802_11 set dataRate_ 2.0e6)

A god (General Operations Director) needs to be created:

create-god $opt(nn)

god is an object that is used to store global information about the
state of the environment, network and nodes that an omniscient ob-
server would have (without being available to any participant in the
simulation). It accelerates the computation of the network rout-
ing/connectivity prior to the simulation run. We still need to create
it even though we use no routing in our simulations.

Finally, at the end of the simulation (at t=opt(stop)), we reset
all the wireless nodes and we call a procedure finish. In this
procedure we call some external tools to filter, compute and dis-
play the throughput graphs. Everything is based on the trace file
out.tr. Have it open and displayed while you follow the expla-
nation. out.tr looks like this:

s 20.050000000 _0_ AGT --- 10 cbr 1000 ...
r 20.051231990 _1_ AGT --- 9 cbr 1000 ...

That is, at second 20.05 the agent in WT(1) (_0_)1 sent (s) cbr
packet number 10 of size 1000 (bytes). And at second 20.05123199,
agent in WT(2) received cbr packet number 9, and so on.

Our goal is to compute the throughput of a given node _i_ along
the simulation time. That is, we need to sum up all packets sizes
(column 8) of the rows starting with r, between second t and t+1.
The “array of seconds” will contain the throughput curve of node
i.

To do this computation, the tcl script (ex6sta.tcl) calls an ex-
ternal command, awk [1].

exec awk -f fil$i.awk out.tr > out$i.xgr

awk filters the trace file out.tr using filter fil2.awk and di-
rects the output to out2.xgr (to be displayed with xgraph later
on). Same with fil4.awk and fil6.awk.

Have a look at fil2.awk. BEGIN{} initializes an array sec[i],
which will contain the throughput at second i. This is done in the
1Note that node numbering starts from 0 in the trace file

2

following lines (between {}) which are applied to each line of the
trace file.

if ($1=="r" && $7=="cbr" && $3=="_1_") {
sec[int($2)]+=$8;

};

It indicates that if the value in column 1 ($1) is r (packet received)
and the value in column 7 ($7) is cbr (packet type) and the value
in column 3 ($3) is _1_ (WT(2)), then add the packet size ($8) to
the throughput in sec[int($2)].

at the end of the trace file, awk will display (output directed to
out1.xgr) the array values as:

X Y
sec[i] throughput[i]

in bits/s.

Last, the output files (out2.xgr, out4.xgr and out6.xgr)
are displayed calling:

exec xgraph out2.xgr out4.xgr out6.xgr &

from the ex6sta.tcl script.

Exercises:
With this basic information, you are (able and) asked to do the fol-
lowing:

CBA

Figure 3: The hidden node scenario

1. Simulate a scenario with 3 nodes, A,B and C, where A is hid-
den to C2, and vice versa, see Figure 3. A and C send full rate
CBR/UDP packets to B (situated in their receive ranges). A
and C use the basic mode (no RTS/CTS) and start transmis-
sions at different times. Show the throughputs.

2. Same as 1, using RTS/CTS. Show both results on a single
graph.

3. Bianchi model verification: In a topology with no hidden
nodes, show the total system throughput when the number of
flows increases from 1 to 50 (i.e. 100 nodes). Consider both
basic and RTS/CTS modes and compare the results with the
Bianchi model numerical simulations.

4. Simulate a multihop scenario (using AODV) and show the
throughput vs. number of hops.

2You will have to reduce the carrier sense range (to 251m) using:
Phy/WirelessPhy set CSThresh 30.5e-10

3. ADDING AN INFRASTRUCTURE
As in the previous section, we will first start by checking the re-
sult of the example. Go to ˜ns/quick-tutorial/ and run
ns infra.tcl. Simulations will start, then xgraph pops up
showing a graph. Nam (Network AniMator) pops up two windows,
one of which shows a network topology (you should zoom-in to see
it properly). Figure 4 shows it more clearly.

W(0): 0.0.0

W(1): 0.1.0

FA: 2.0.0

HA: 1.0.0

MH: 1.0.1

5 Mbps / 2 ms

5 Mbps / 2 ms

5 Mbps / 2 ms

���
���
���
���
���

���
���
���
���
���

����
����
����

����
����
����

�������� ���
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Figure 4: W(1) routes packets from W(0) to the Mobile Host
(MH), associated with his Home Agent (HA) or with a Foreign
Agent (FA)

A wired node W(0), with address 0.0.0 is sending TCP pack-
ets to a Mobile Host (MH: 1.0.0) associated to its Home Agent
(HA: 1.0.0). MH starts moving towards the Foreign Agent (FA:
2.0.0), gets disconnected from the HA (around t = 113s), then
connects to the FA later on (at t = 174s). While moving back
towards the HA, the MH gets disconnected again (at t = 213s)
then reconnects to the HA’s network (at t = 239s). This can be
observed in the xgraph output curve.

Wired node W(1) (0.1.0) routes the packets from W(0) to the
HA and FA. All wired links are 5Mbps and have 2ms delays (cf.
infra.tcl):

$ns_ duplex-link $W(0) $W(1) 5Mb 2ms DropTail
$ns_ duplex-link $W(1) $HA 5Mb 2ms DropTail
$ns_ duplex-link $W(1) $FA 5Mb 2ms DropTail

We can control how these wired links look like in NAM by setting:

$ns_ duplex-link-op $W(0) $W(1) orient down
...

3

How do we tell the HA to forward the MH’s packets to its new
location (FA)? MobileIP takes care of this:

$ns_ node-config -mobileIP ON

And we have to register the MH at the corresponding Home Agent
(HA):

set MH [$ns_ node 1.0.1]
set HAaddress [AddrParams addr2id [$HA node-addr]]
[$MH set regagent_] set home_agent_ $HAaddress

Therefore, when the MH moves towards the FA (starting at second
100)

$ns_ at 100.00 "$MH setdest 640.00 610.00 20.00"

at a speed of 20m/s (640 and 610 are the coordinates of the FA),
the home agent (HA) will take care of tunneling MH’s packets to
the FA.

In this topology we are using hierarchical addresses:

$ns_ node-config -addressType hierarchical

composed of 3 domains (0.x.x to which the wired nodes be-
long, 1.x.x where HA and MH belong, and 2.x.x where the
FA belongs), therefore:

AddrParams set domain_num_ 3

The first of the 3 domains has 2 clusters: 0.0.x and 0.1.x.
The second domain (1.x.x) has only 1 cluster (i.e. 1.0.x),
and the last domain also has 1 cluster (i.e. 2.0.x), therefore:

lappend cluster_num 2 1 1

Finally, cluster 0.0.x has 1 node; cluster 0.1.x has 1 node;
cluster 1.0.x has 2 nodes; and cluster 2.0.x has 1 node.
Therefore:

lappend eilastlevel 1 1 2 1

The rest of the tcl script is similar to the previous example (in Sec-
tion 2).

Note that in this example we have 2 trace files:

set tracefd [open $opt(tr-ns) w]
set namtrace [open $opt(tr-nam) w]
$ns_ trace-all $tracefd
$ns_ namtrace-all-wireless $namtrace ...

One of these files is used by NAM. We will let you discover NAM’s
GUI intuitively, and watch the packet runs on the wired links. Mo-
bile nodes can be seen moving in NAM. However, packets are not
shown on the wireless channel.

As for the ns trace file, the structure differs slightly from the one
seen before since it combines wireless (similar to the previous one)
and wired traces. Since we are only interested in the throughput of
the MH (wireless), we only had to adapt the awk filter fil-tcp.awk
to count tcp packets instead of cbr ones:

if ($1=="r" && $7=="tcp" && $3=="_4_") {...

Exercises:
Now that you are familiar with wireless and wired networking sim-
ulations, you are (able and) asked to simulate all scenarios pre-
sented in Figure 5 and Table 1.

S2
S1

11 Mbps / basic mode

IEEE 802.11

100 Mbps / 0.6 ms

Sink

���
���
���
���

���
���
���
���

����
����
����

����
����
����

��������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Figure 5: S1 and S2 contend to access the channel to send their
traffic to the Sink

4. FAQ
Q: Compilation problem... what’s wrong?
A: Make sure there are no spaces after
$ns_ node-config -adhocRouting DumbAgent \
and all \s of the following lines.

Q: Even though the hidden nodes are far enough from each other,
it seems they still can sense each other (no decrease in throughput).
Why?
A: A common problem is to miss one of the “h”s in:
Phy/WirelessPhy set CSThresh_

4

Scenario # S1
1 7 Mbps UDP, pkt size= 1448 B
2 7 Mbps UDP, pkt size= 1448 B
3 7 Mbps UDP, pkt size= 1448 B
4 7 Mbps UDP, pkt size= 724 B
5 7 Mbps UDP, pkt size= 2000 B

Scenario # S2
1 7 Mbps UDP, pkt size= 1448 B
2 7 Mbps UDP, pkt size= 724 B
3 TCP
4 TCP
5 TCP

Table 1: Scenarios for topology in Figure 5

5. REFERENCES
[1] http://www.cs.hmc.edu/qref/awk.html.

[2] Kevin Fall and Kannan Varadhan. The ns manual.
http://www.isi.edu/nsnam/ns/ns-documentation.html.

[3] M. Greis. Marc Greis’ Tutorial for the UCB/LBNL/VINT
Network Simulator “ns”.
http://www.isi.edu/nsnam/ns/tutorial/index.html.

[4] The VINT Project. Network Simulator.
http://www.isi.edu/nsnam/ns/.

5

