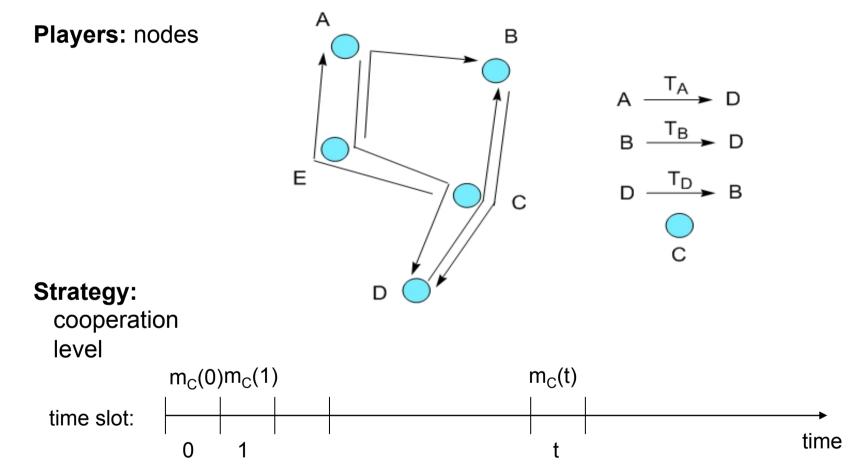


Security and Privacy in Wireless Networks

Mohammad Hossein Manshaei manshaei@gmail.com

Chapter 10: (secowinet.epfl.ch) Packet Forwarding in Ad Hoc Networks

SELFISHNESS IN PACKET FORWARDING


Introduction

- The operation of multi-hop wireless networks requires the nodes to forward data packets on behalf of other nodes
- However, such cooperative behavior has no direct benefit for the forwarding node, and it consumes valuable resources (battery)
- Hence, the nodes may tend to behave selfishly and deny cooperation
- If many nodes defect, then the operation of the entire network is jeopardized

> Questions:

- What are the conditions for the emergence of cooperation in packet forwarding?
- Can it emerge spontaneously or should it be stimulated by some external mechanism?

Modeling packet forwarding as a game

Benefit (of node i):

proportion of packets sent by node i reaching their destination

Cost function

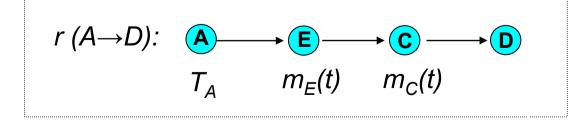
Cost for forwarder *f_i*:

$$c_{f_j}(r,t) = -T_s(r) \cdot C \cdot \hat{\tau}_j(r,t)$$

where:

 $T_s(r)$ – traffic sent by source *s* on route *r* C – unit cost of forwarding

Example :

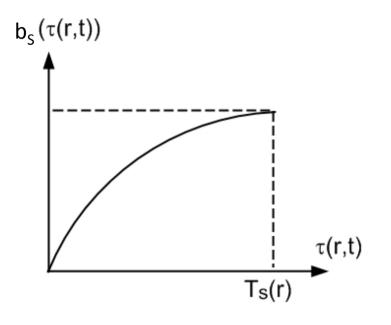

$$\hat{\tau}_{C}(r,t) = \prod_{k \in \{E,C\}} m_{f_{k}}(t) = m_{E}(t) \cdot m_{C}(t)$$
$$c_{C}(r,t) = -T_{A}(r) \cdot C \cdot \hat{\tau}_{j}(r,t)$$

Normalized_throughput at forwarder f_i :

$$\hat{\tau}_{j}(r,t) = \prod_{k=1}^{j} m_{f_{k}}(t)$$

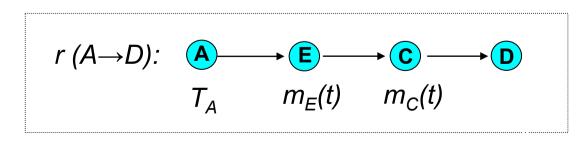
where:

- r route on which f_k is a forwarder
- t time slot
- f_k forwarders on route r
- m_{fk} cooperation level of forwarder f_k


Benefit function

Experienced throughput :

 $\tau(r,t) = T_s(r) \cdot \prod_{k=1}^l m_{f_k}(t)$


- where: s source r route on which s is a source
 - *t* time slot
 - f_k forwarders for s
 - p_{fk} cooperation level of forwarder f_k

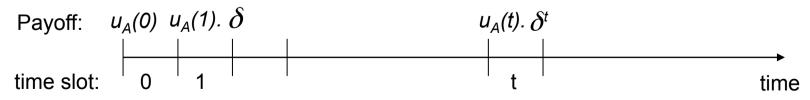
benefit function :

Example :

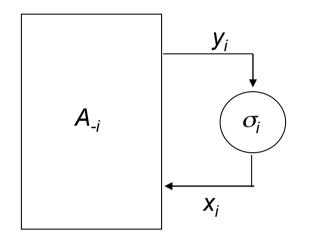
 $\tau(r,t) = T_A(r) \cdot m_E(t) \cdot m_C(t)$

Total payoff

Payoff = Benefit - Cost


$$u_{i}(t) = \sum_{q \in S_{i}(t)} b_{i}(\tau(q,t)) + \sum_{r \in F_{i}(t)} c_{i}(r,t)$$

where: $S_i(t)$ – set of routes on which *i* is a source $F_i(t)$ – set of routes on which *i* is a forwarder


The goal of each node is to maximize its total payoff over the game:

$$\sum_{t=0}^{\infty} u_i(t) \cdot \delta^t \qquad \text{where: } \begin{array}{l} \delta - \text{discounting factor} \\ t - \text{time} \end{array}$$

Example :

Representation of the Nodes as Players

Strategy function for node *i*:

 $m_i(t) = \sigma_i([\tau(r, t-1)])$

where:

 τ (*r*,*t*) – experienced throughput

Node *i* is playing against the rest of the network (represented by the box denoted by A_{-i})

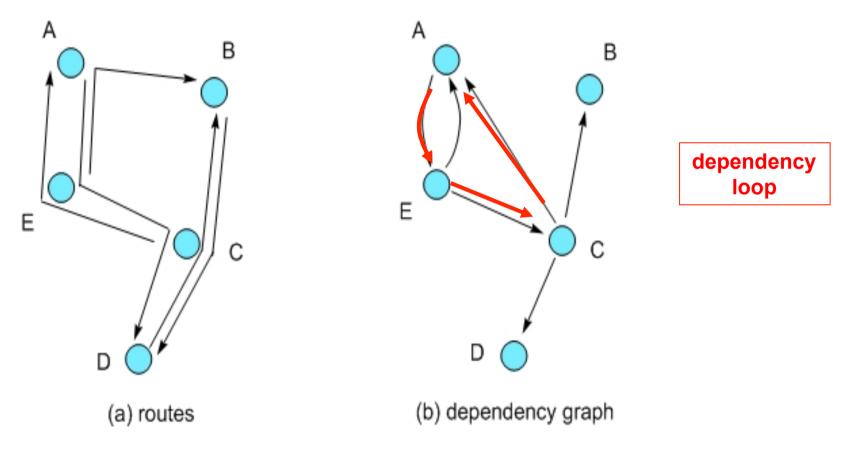
Examples of Strategies

Strategy	Initial cooperation level	Function $\sigma_i(y_i) = x_i$
AllD (always defect)	0	$\sigma_i(y_i) = 0$
AllC (always cooperate)	1	$\sigma_i(y_i) = 1$
TFT (Tit-For-Tat)	1	$\sigma_i(y_i) = y_i$

where y_i stands for the input

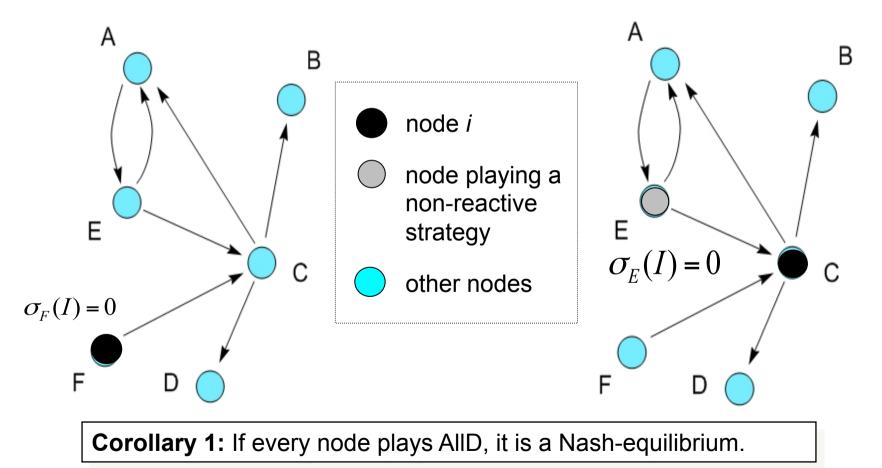
non-reactive strategies:

the output of the strategy function


is independent of the input (example: AllD and AllC)

reactive strategies:

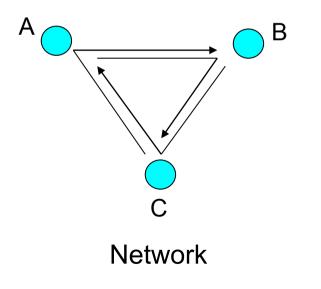
the output of the strategy function depends on the input (example: TFT)

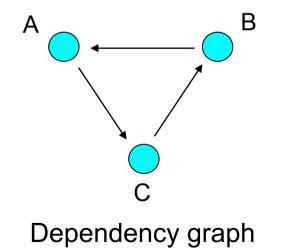

Concept of Dependency Graph

dependency: the benefit of each source is dependent on the behavior of its forwarders

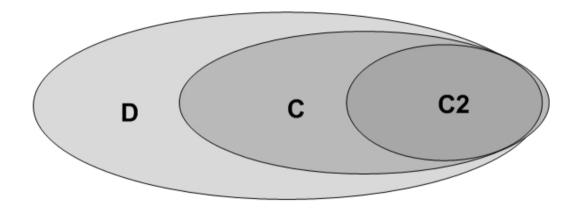
Analytical Results (1/2)

Theorem 1: If node *i* does not have any dependency loops, then its best strategy is AlID. **Theorem 2:** If node *i* has only non-reactive dependency loops, then its best strategy is AlID.



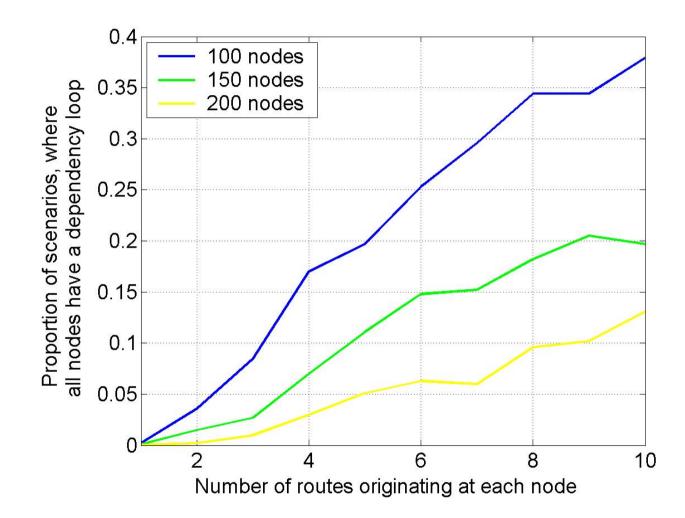

Analytical results (2/2)

Theorem 3 (simplified): Assuming that node *i* is a forwarder, its behavior will be cooperative only if it has a dependency loop with each of its sources


Corollary 2: If Theorem 3 holds for every node, it is a Nash-equilibrium.

Example in which Corollary 2 holds:

Classification of Scenarios



- **D**: Set of scenarios, in which every node playing AllD is a Nash equilibrium
- **C:** Set of scenarios, in which a Nash equilibrium based on cooperation is not excluded by Theorem 1
- **C2:** Set of scenarios, in which cooperation is based on the conditions expressed in Corollary 2

Simulation settings

Number of nodes	100, 150, 200
Distribution of the nodes	random uniform
Area type	torus
Area size	1500x1500m, 1850x1850m, 2150x2150m
Radio range	200 m
Number of routes originating at each node	1-10
Route selection	shortest path
Number of simulation runs	1000

Simulation results

Summary

> Analytical results:

- If everyone drops all packets, it is a Nash-equilibrium
- In theory, given some conditions, a cooperative Nashequilibrium can exist (i.e., each forwarder forwards all packets)

Simulation results:

 In practice, the conditions for cooperative Nash-equilibria are very restrictive : the likelihood that the conditions for cooperation hold for every node is extremely small

> Consequences:

- Cooperation cannot be taken for granted
- Mechanisms that stimulate cooperation are necessary
 - incentives based on virtual currency
 - reputation systems