

# Security and Privacy in Wireless Networks

Mohammad Hossein Manshaei manshaei@gmail.com



## SELFISH BEHAVIOR AT THE MAC LAYER OF CSMA/CA

operating principles of IEEE 802.11, detecting selfish behavior in hot spots, and selfish behavior in pure ad hoc networks

Chapter 9: (secowinet.epfl.ch)

### **Chapter outline**

9.1 Operating principles of IEEE 802.119.2 Detecting selfish behavior in hotspots9.3 Selfish behavior in pure ad hoc networks

### Infrastructure vs. ad hoc networks



Ad hoc network



Note: Slides 3 to 14 are derived from the slide show of the book "Mobile Communications" by Jochen Stiller, Addison-Wesley, 2003

### IEEE 802.11 - Architecture of an infrastructure network



- Station (STA)
  - terminal with access mechanisms to the wireless medium and radio contact to the access point
- Basic Service Set (BSS)
  - group of stations using the same radio frequency
- Access Point
  - station integrated into the wireless LAN and the distribution system
- Portal
  - bridge to other (wired) networks
- Distribution System
  - interconnection network to form one logical network (ESS: Extended Service Set) based on several BSS

# 802.11 - Architecture of an ad-hoc network



- Direct communication within a limited range
  - Station (STA): terminal with access mechanisms to the wireless medium
  - Basic Service Set (BSS): group of stations using the same radio frequency



### Interconnection of IEEE 802.11 with Ethernet





# 802.11 - Layers and functions

- MAC
  - access mechanisms, fragmentation, encryption
- MAC Management
  - synchronization, roaming, MIB, power management

- PLCP (Physical Layer Convergence Protocol)
  - clear channel assessment signal (carrier sense)
- PMD (Physical Medium Dependent)
  - modulation, coding
- PHY Management
  - channel selection, MIB
- Station Management
  - coordination of all management functions



# 802.11 - Physical layer

- ➢ 3 versions: 2 radio: DSSS and FHSS (both typically at 2.4 GHz), 1 IR
  - data rates 1, 2, 5 or 11 Mbit/s
- DSSS (Direct Sequence Spread Spectrum)
  - DBPSK modulation (Differential Binary Phase Shift Keying) or DQPSK (Differential Quadrature PSK)
  - chipping sequence: +1, -1, +1, +1, -1, +1, +1, -1, -1, -1 (Barker code)
  - max. radiated power 1 W (USA), 100 mW (EU), min. 1mW
- FHSS (Frequency Hopping Spread Spectrum)
  - spreading, despreading, signal strength
  - min. 2.5 frequency hops/s, two-level GFSK modulation (Gaussian Frequency Shift Keying)

#### ➢ Infrared

- 850-950 nm, diffuse light, around 10 m range
- carrier detection, energy detection, synchronization

### 802.11 - MAC layer principles

- Traffic services
  - Asynchronous Data Service (mandatory)
    - exchange of data packets based on "best-effort"
    - support of broadcast and multicast
  - Time-Bounded Service (optional)
    - implemented using PCF (Point Coordination Function)
- Access methods (called DFWMAC: Distributed Foundation Wireless MAC)
  - DCF CSMA/CA (mandatory)
    - collision avoidance via randomized "back-off" mechanism
    - minimum distance between consecutive packets
    - ACK packet for acknowledgements (not for broadcasts)
  - DCF with RTS/CTS (optional)
    - avoids hidden terminal problem
  - PCF (optional)
    - access point polls terminals according to a list
- DCF: Distributed Coordination Function
- PCF: Point Coordination Function

# **802.11 - MAC layer principles**

- Priorities
  - defined through different inter frame spaces
  - no guaranteed, hard priorities
  - SIFS (Short Inter Frame Spacing)
    - highest priority, for ACK, CTS, polling response
  - PIFS (PCF IFS)
    - medium priority, for time-bounded service using PCF
  - DIFS (DCF, Distributed Coordination Function IFS)
    - lowest priority, for asynchronous data service





- Station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- If the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)
- If the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- If another station occupies the medium during the back-off time of the station, the back-off timer stops (to increase fairness)

# 802.11 - CSMA/CA unicast

#### > Sending unicast packets

- station has to wait for DIFS before sending data
- receiver acknowledges at once (after waiting for SIFS) if the packet was received correctly (CRC)
- automatic retransmission of data packets in case of transmission errors



# 802.11 – DCF with RTS/CTS

#### Sending unicast packets

- station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
- acknowledgement via CTS after SIFS by receiver (if ready to receive)
- sender can now send data at once, acknowledgement via ACK
- other stations store medium reservations distributed via RTS and CTS



### **Chapter outline**

9.1 Operating principles of IEEE 802.119.2 Detecting selfish behavior in hotspots9.3 Selfish behavior in pure ad hoc networks

### **Section outline**

- Motivation
- System model
- Misbehavior techniques
- Components of DOMINO (System for Detection Of greedy behavior in the MAC layer of IEEE 802.11 public NetwOrks)
- Simulation
- Implementation
- Related work
- Conclusion

## **Motivation**

- Internet access through public hotspots
- Problem: misuse of protocols
- What about MAC-layer misbehavior?
  - Considerable bandwidth gains
  - Hidden from the upper layers
  - Always usable
- If the misbehavior is detected, the WISP can take measures

#### How to detect?

### System model

- Infrastructure mode
- DCF (Distributed Coordination Function)
- Single trusted AP operated by a WISP
- Misbehavior is greedy as opposed to malicious
- DOMINO is implemented **only** at the AP

### **Example scenario**





CW: Contention Window SIFS: Short Inter–Frame Spacing DIFS: Distributed Inter–Frame Spacing RTS / CTS: Request To Send / Clear To Send ACK: ACKnowledgement NAV: Network Allocation Vector

### Misbehavior techniques – Overview

• Uplink traffic (stations  $\Rightarrow$  AP)

- Example scenarios: backup, webcam, ...

- Downlink traffic (AP ⇒ stations)
  - Constitutes most of the wireless traffic
  - Over 90% is TCP
  - Example scenarios: Web browsing, FTP, video streaming, ...

### **Uplink traffic – Frame scrambling**



CW: Contention Window SIFS: Short Inter–Frame Spacing DIFS: Distributed Inter–Frame Spacing RTS / CTS: Request To Send / Clear To Send ACK: ACKnowledgement NAV: Network Allocation Vector

### **Solution: Number of retransmissions**

- Lost frames are retransmitted
- Sequence numbers in the MAC header distinguish retransmissions
- Cheater's retransmissions are fewer than those of well-behaved stations
- By counting retransmissions, the AP can single out the cheater

### **Uplink traffic – Oversized NAV**



CW: Contention Window SIFS: Short Inter-Frame Spacing DIFS: Distributed Inter-Frame Spacing RTS / CTS: Request To Send / Clear To Send ACK: ACKnowledgement NAV: Network Allocation Vector

### **Solution: Comparison of NAVs**

 AP measures the actual NAV and compares to the received one

 A repeated pattern of oversized NAVs distinguishes the cheater

## **Uplink traffic – Short DIFS**



CW: Contention Window SIFS: Short Inter–Frame Spacing DIFS: Distributed Inter–Frame Spacing RTS / CTS: Request To Send / Clear To Send ACK: ACKnowledgement NAV: Network Allocation Vector

# **Solution: Comparison of DIFS**

 The value of DIFS is constant and provided by the IEEE 802.11 standard

 A short DIFS cannot be but the result of cheating

### **Uplink traffic – Backoff**



CW: Contention Window SIFS: Short Inter-Frame Spacing DIFS: Distributed Inter-Frame Spacing RTS / CTS: Request To Send / Clear To Send ACK: ACKnowledgement NAV: Network Allocation Vector

### Solution (1/2): Actual backoff test



- Compares the average actual backoff of each station to the average actual backoff of the AP
- Collisions are not taken into account
- Unsuitable for sources with interframe delays (e.g., due to TCP congestion control)

# Solution (2/2): Consecutive backoff test



- Useful when cheaters have interframe delays (mainly TCP sources)
- Does not work if the traffic is very high due to the lack of samples
- Complementary to the actual backoff test

### Downlink traffic – TCP ACK scrambling



- Server receives no TCP ACK and slows down the TCP flow
- ➢ Repeated scrambling kills the TCP connection
- > The AP receives less packets destined to the well-behaved station
- > Packets destined to the cheater are delayed less in AP's queue

### **TCP DATA scrambling with MAC forging**



- > Tries to kill the TCP connection like the previous attack
- MAC ACK contains no source address
- The forged MAC ACK prevents the AP from retransmitting the lost packet

### **Solution: Dummy frame injection**

• AP periodically injects dummy frames destined to non- existing stations

- If it receives corresponding MAC ACKs, there is cheating
- Higher-layer mechanisms will identify the cheater (e.g., by monitoring the TCP flows of stations)

### **Components of DOMINO**

| Cheating method                   | Detection test                                           |
|-----------------------------------|----------------------------------------------------------|
| Frame scrambling                  | Number of retransmissions                                |
| Oversized NAV                     | Comparison of the declared and actual NAV values         |
| Transmission before DIFS          | Comparison of the idle time after the last ACK with DIFS |
| Backoff manipulation              | Actual backoff                                           |
|                                   | Consecutive backoff                                      |
| Frame scrambling with MAC forging | Periodic dummy frame injection                           |

### **Simulation – Topology**

- ➤ ns-2
- Backoff manipulation
- CBR / UDP traffic
- ➢ FTP / TCP traffic
- misbehavior coefficient (m):
   cheater chooses its backoff from
   the fixed contention window
   (1 m) x CWmin



### Simulation – DOMINO performance – UDP case (Actual Backoff)



36

# Simulation – DOMINO performance – TCP case (Consecutive Backoff)



### Implementation

#### • Equipment

- Adapters based on the Atheros
   AR5212 chipset
- MADWIFI driver
- Misbehavior (backoff)
  - Write to the register containing
     CWmin and CWmax (in driver)
- Monitoring
  - The driver in MONITOR mode
  - prism2 frame header



### **Implementation – Throughput**



### Implementation – Backoff and DOMINO



## **Conclusion on Section 9.2**

- MAC-layer greedy behavior can be a serious problem
- DOMINO is a simple and efficient solution compatible with the existing infrastructure
- DOMINO can be seamlessly integrated with existing WiFi security tools to provide ultimate protection
- First proof-of-concept implementation prototype
- http://domino.epfl.ch

### **Chapter outline**

9.1 Operating principles of IEEE 802.119.2 Detecting selfish behavior in hotspots9.3 Selfish behavior in pure ad hoc networks

### **Section outline**

- System Model and Assumptions
- Bianchi's Model
- Static CSMA/CA Game
- Repeated CSMA/CA Game
- Implementation

### 9.3.1 System Model and Assumptions

- Ad hoc mode (no access point)
- > N wireless nodes transmit to N receivers (N links)
- Any node can hear any other node (single-collision domain)
- ➢ IEEE 802.11 CSMA/CA MAC layer
- Bianchi's Model for throughput calculation





### **Bianchi's Model: Topology and Parameters**

• N links with the same physical condition (single-collision domain):



#### **Bianchi's Model: Two Dimensional Markov chain**





#### **Bianchi's Model: Two Dimensional Markov chain**



### Bianchi's Model: Two Dimensional Markov chain



### Bianchi's Model: Stationary Distribution of Chain



 $b_{i,0} = p b_{i-1,0}$ 



 $b_{m,0} = p b_{m-1,0} + p b_{m,0}$ 

### **Bianchi's Model: Solution for p and \pi**

After some derivations  $\rightarrow$  system of two nonlinear equations with two variables p and  $\pi$ :

$$\begin{cases} p = 1 - (1 - \pi)^{N-1} \\ \pi = \frac{2}{1 + W_{min} + pW_{min} \sum_{k=0}^{m-1} (2p)^k} \end{cases}$$

 $\clubsuit$  Can be solved numerically to obtain p and  $\pi$ 

### **Bianchi's model: Throughput Calculation**

• Throughput of node i:

 $\tau_{i} = \frac{E[Payload Transmitted by user i in a slot time]}{E[Duration of slot time]} = \frac{P_{i}^{s}L}{P^{s}T^{s} + P^{c}T^{c} + P^{id}T^{id}}$ 

- P<sub>i</sub><sup>s</sup>: Probability of successful transmission of i during a random time slot
- L: Average packet payload size
- T<sup>s</sup>: Average time to transmit a packet of size L
- P<sup>id</sup>: Probability of the channel being idle
- T<sup>id</sup>: Duration of the idle period
- P<sup>c</sup>: Probability of collision
- T<sup>c</sup>: Average time of collision

$$P_{i}^{s} = \pi_{i} \prod_{j \neq i} (1 - \pi_{j})$$

$$P^{s} = \sum_{j=1}^{N} P_{j}^{s}$$

$$P^{id} = \prod_{j=1}^{N} (1 - \pi_{j})$$

$$P^{c} = 1 - P^{id} - \sum_{j=1}^{N} P_{j}^{s}$$

## 9.3.2 CSMA/CA Game: G<sub>CSMA/CA</sub>

- A single cheater
  - Selfish
  - Tends to use the full channel capacity
  - Does not respect the binary exponential backoff
  - Keeps her W after a collision unchanged (m=0)
- Strategy set:  $S_i = \{1, 2, \dots, W_{max}, W_{\infty}\}$
- Payoff function:

$$u_i(W) = \tau_i^{(c)}(W)$$

# **G**<sub>CSMA/CA</sub> : cheaters payoff function

> Access probability of cheater i:  $\pi_i^{(c)} = \frac{2}{W_i + 1}$ 

> Throughput of cheater i:  $\tau$ 

$$\overline{c}_i^{(c)} = \frac{\pi_i^{(c)} c_i^{(1)}}{\pi_i^{(c)} c_i^{(2)} + c_i^{(3)}}$$



> If  $\pi_j^{(c)} < 1$  for all j in P\{i}:

- strict inequality, so → throughput: strictly decreasing function of W<sub>i</sub>
- by unilaterally decreasing its own Wi: a selfish node can increase its throughput

### **Model Verification**



# **NE of the G<sub>CSMA/CA</sub>**

• Lemma 9.1:

For any strategy profile W that constitutes a NE,  $\exists i \in P$  such that  $W_i = 1$ 

• Theorem 9.1:

 $G_{CSMA/CA}$  admits exactly  $(W_{max} + 1)^{|P|} - W_{max}^{|P|}$ NEs.

# **NE of the G**<sub>CSMA/CA</sub>

- Define: D = {i: W<sub>i</sub>=1, i ∈ P}
- Two families of NE:
  - |D|=1: only one player receives a non-null throughput and throughput = 0 for all others
  - |D| > 1: throughput = 0 for all players.
- Some NE from the first family are Pareto optimal.
  - Example: W = (W<sub>1</sub>=1, W<sub>2</sub>=W<sub> $\infty$ </sub>, ..., W<sub>|P|</sub>=W<sub> $\infty$ </sub>) is a Pareto optimal NE
- NE of the 2nd family: tragedy of the commons (misuse of the public good).

### **Uniqueness, Fairness and Pareto Optimality**

- two families of NE:
  - 1st: great unfairness, a single player gets some positive payoff
  - 2nd: highly inefficient NE, zero payoff for every player
- none is satisfactory
- A desirable solution:
  - Uniqueness
  - Pareto optimality
  - Fairness

### **Uniqueness, Fairness and Pareto Optimality**



- Transformation of the Pareto-optimal point to a NE:
  - Repeated games
  - Selective jamming

## 9.3.3 Repeated CSMA/CA Game: G<sup>∞</sup><sub>CSMA/CA</sub>

- $G^{\infty}_{CSMA/CA} = G_{CSMA/CA}$  played repeatedly T times.
- Payoff function:

$$u_i^{\infty} = \liminf_{T \to \infty} \frac{1}{T} \sum_{t=1}^T u_i^t(\pi_i^t, \pi_{-i}^t)$$

• the cheaters' per stage payoff function change to

$$u_i^t(\pi) = \tau^{(c)t}(\pi) - pf_i^t(\pi)$$

• pf: penalty function

## **Penalty Function**

• Penalty function:

$$pf_i(\pi_i, \pi_{-i}) = \begin{cases} \varphi_i(\pi_i, \pi_{-i}), & \pi_i \in (\overline{\pi}, 1] \\ 0, & \pi_i \in [0, \overline{\pi}] \end{cases}$$

• 
$$\varphi_i(\pi_i, \pi_{-i}) > 0$$
 and  $\frac{\partial}{\partial \pi_i} \varphi_i(\pi_i, \pi_{-i}) > \frac{\partial}{\partial \pi_i} \tau_i^{(c)}(\pi_i, \pi_{-i}),$ 

 $\forall \pi_i \in (\overline{\pi}, 1] \text{ and } \pi_j < 1 \quad (j \in P \setminus \{i\}) .$ 

• Then  $u_i$  has a unique maximizer  $\pi \in (0,1)$ . (Lemma 9.2)

# Subgame Perfect NE (SPNE) of G<sup>∞</sup><sub>CSMA/CA</sub>

 Theorem 9.4: The strategy profile(π<sup>t</sup><sub>i</sub> = π)<sub>i∈P,t={1,...,T}</sub> is a SPNE of the G<sup>∞</sup><sub>CSMA/CA</sub>.

• Corollary 9.1: any strategy  $profile(\pi_i^t = \pi)_{i \in P, t = \{1, ..., T\}}$ such that  $\pi \in (0, 1)$  can be made a SPNE.

### Making W\* a NE: Practical Penalty Function

- Two players k and i
- k selectively jams i if  $\tau_i(\pi) > \tau_k(\pi)$
- k calculates the penalty to be inflicted on i:

$$pf_i(\pi_i, \pi_{-i}) = \begin{cases} \tau_i^{(c)}(\pi_i, \pi_{-i}) - \tau_k^{(c)}(\pi_i, \pi_{-i}), & \text{if } \tau_i^{(c)}(\pi_i, \pi_{-i}) > \tau_k^{(c)}(\pi_i, \pi_{-i}) \\ 0, & \text{otherwise }. \end{cases}$$

•  $u_i$  has a unique maximizer:  $\pi_i = \pi_k$ 

• so,  $\pi = \min(\pi_i, \pi_k)$  i.e.  $\overline{W} = \max(W_i, W_k)$  is a unique NE.

• equal payoffs for two players at NE.

### **Example: Penalization**



### 9.3.4 Implementation: Detection Mechanism

 – each cheating node measures the throughput of all the others.



### **Adaptive Strategy**

– When cheater i is jammed (penalized) during  $\Delta$ : increases her W by steps of size  $\gamma$ .



### **Reaching the Pareto-optimal Point**

- $\succ$  W<sub>i</sub>=W<sup>init</sup> for all cheaters
- > Every cheater sets up a random timer to increase her W by  $\gamma$ .
- > X increase her W to  $W_x^{init} + \gamma$ .
- > X detects all other cheaters as deviating: begin penalizing them.
- Penalized cheater: disable the timer and use the adaptive strategy
- > system will stabilize, when  $W_i^{init} = W_i^{init} + \gamma$  for all.
- Then, every cheater compares her new throughput with previous:
- ➢ if a decrease in throughput: terminate the search for W\*
- > Otherwise: increase her W by  $\gamma$ .

### **Fully Distributed Implementation**



- 7 cheaters
- step size = 5

### **Fully Distributed Implementation**



# **Summary of Section 9.3**

- Addressed the Problem of cheating in single collision domain CSMA/CA networks
- Formalism for the systematic study of rational cheating in CSMA/CA ad hoc networks
- Single cheater as well as several cheaters acting without restraint
- Transformation of the Pareto optimal point into a Subgame Perfect Nash Equilibrium (repeated games)
- Smart cheaters can collectively find this point

## **Conclusion on Chapter 9**

- Selfish behavior is relatively easy to implement at the MAC layer
- Upcoming technologies such as cognitive radios will further facilitate this kind of misbehavior
- In the case of IEEE 802.11, we have shown how to thwart it, both from the engineering and the analytical points of view.