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static games, dynamic games, repeated games, strict and weak 
dominance, Nash equilibrium, Pareto optimality, and subgame perfection 
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Ø  usually to model sequential decisions 
Ø  game represented by a tree 
Ø  Example 3 modified: the Sequential Multiple Access game: 

Blue plays first, then Green plays. 

Green 

Blue 
T Q 

T Q T Q 

(-c,-c) (1-c,0) (0,1-c) (0,0) 

Reward	  for	  successful	  
transmission:	  1	  
	  
Cost	  of	  transmission:	  c	  
(0	  <	  c	  <<	  1)	  

Green 

Time-division channel 
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Ø The strategy defines the moves for a 
player for every node in the game, even 
for those nodes that are not reached if 
the strategy is played. 

Green 

Blue 
T Q 

T Q T Q 

(-c,-c) (1-c,0) (0,1-c) (0,0) 

Green 
strategies	  for	  Blue:	  	  
T,	  Q	  

strategies	  for	  Green:	  	  
TT,	  TQ,	  QT	  and	  QQ	  

TQ means that player p2 transmits if p1 transmits and remains quiet if p1 remains quiet. 
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Blue vs. 
Green 

TT TQ QT QQ 

T (-c,-c) (-c,-c) (1-c,0) (1-c,0) 

Q (0,1-c) (0,0) (0,1-c) (0,0) 
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•  Solve the game by reducing from the final 
stage 

•  Eliminates Nash equilibria that are increadible 
threats 

Green 

Blue 
T Q 

T Q T Q 

(-c,-c) (1-c,0) (0,1-c) (0,0) 

Green Incredible	  threat:	  (Q,	  TT)	  

Backward induction solution: h={T, Q} 
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•  Extends the notion of Nash equilibrium 

Green 

Blue 
T Q 

T Q T Q 

(-c,-c) (1-c,0) (0,1-c) (0,0) 

Green 

Subgame	  perfect	  equilibria:	  
(T,	  QT)	  and	  (T,	  QQ)	  
	  
	  

One-deviation property: A strategy si conforms to the one-deviation 
property if there does not exist any node of the tree, in which a player 
i can gain by deviating from si and apply it otherwise. 

Subgame perfect equilibrium: A strategy profile s constitutes a 
subgame perfect equilibrium if the one-deviation property holds for 
every strategy si in s. 

Finding	  subgame	  perfect	  equilibria	  
using	  backward	  inducLon	  

Stackelberg games have one leader and one or several followers 
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•  repeated interaction between the players (in stages) 
•  move: decision in one interaction 
•  strategy: defines how to choose the next move, given 

the previous moves 
•  history: the ordered set of moves in previous stages 

–  most prominent games are history-1 games (players 
consider only the previous stage) 

•  initial move: the first move with no history 
•  finite-horizon vs. infinite-horizon games 
•  stages denoted by t (or k) 
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•  finite-horizon vs. infinite-horizon games 
•  myopic vs. long-sighted repeated game 

( )1i iu u t= +

( )
0

T

i i
t

u u t
=

=∑

( )
0

i i
t

u u t
∞

=

=∑

myopic: 

long-sighted finite: 

long-sighted infinite: 

payoff with discounting: ( )
0

t
i i

t
u u t ω

∞

=

= ⋅∑
0 1ω< ≤ is the discounting factor 11/37	  



•  usually, history-1 strategies, based on different inputs: 

–  others’ behavior: 

–  others’ and own behavior: 

–  payoff: 
 

( ) ( )1i i im t s m t−⎡ ⎤+ = ⎣ ⎦
( ) ( ) ( )1 ,i i i im t s m t m t−⎡ ⎤+ = ⎣ ⎦

( ) ( )1i i im t s u t⎡ ⎤+ = ⎣ ⎦

Example strategies in the Forwarder’s Dilemma: 

Blue (t) initial 
move 

F D strategy name 

Green (t+1) F F F AllC 

F F D Tit-For-Tat (TFT) 

D D D AllD 

F D F Anti-TFT 

12/37	  



(1-c, 1-c) (-c, 1) 
(1, -c) (0, 0) 

Blue 
Green 

Forward 

Drop 

Forward Drop 

? 

? 

Blue Green 

stage payoff 
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Blue strategy Green strategy 

AllD AllD 

AllD TFT 

AllD AllC 

AllC AllC 

AllC TFT 

TFT TFT 

infinite game with discounting: ( )
0

t
i i

t
u u t ω

∞

=

= ⋅∑
Blue payoff Green payoff 

0 0 

1 -c 

1/(1-ω) -c/(1-ω) 

(1-c)/(1-ω) (1-c)/(1-ω) 

(1-c)/(1-ω) (1-c)/(1-ω) 

(1-c)/(1-ω) (1-c)/(1-ω) 
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Blue strategy Green strategy 

AllD AllD 

AllD TFT 

AllD AllC 

AllC AllC 

AllC TFT 

TFT TFT 

Blue payoff Green payoff 

0 0 

1 -c 

1/(1-ω) -c/(1-ω) 

(1-c)/(1-ω) (1-c)/(1-ω) 

(1-c)/(1-ω) (1-c)/(1-ω) 

(1-c)/(1-ω) (1-c)/(1-ω) 

•  AllC receives a high payoff with itself and TFT, but 
•  AllD exploits AllC 
•  AllD performs poor with itself 
•  TFT performs well with AllC and itself, and 
•  TFT retaliates the defection of AllD 

TFT is the best strategy if ω is high ! 
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Theorem: In the Repeated Forwarder’s Dilemma, if both 
players play AllD, it is a Nash equilibrium. 

Theorem: In the Repeated Forwarder’s Dilemma, both 
players playing TFT is a Nash equilibrium as well. 

Blue strategy Green strategy Blue payoff Green payoff 

AllD AllD 0 0 

TFT TFT (1-c)/(1-ω) (1-c)/(1-ω) 

The Nash equilibrium sBlue = TFT and sGreen = TFT is 
Pareto-optimal (but sBlue = AllD and sGreen = AllD is not) ! 
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Ø any strategy can be submitted (history-X) 
Ø  strategies play the Repeated Prisoner’s Dilemma 

(Repeated Forwarder’s Dilemma) in pairs 
Ø number of rounds is finite but unknown 

Ø TFT was the winner 
Ø  second round: TFT was the winner again 

R. Axelrod The Evolution of Cooperation 
Basic Books, 1984 
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•  Rationality 
•  Payoff function and cost 
•  Pricing and mechanism design (to promote 

desirable solutions) 
•  Infinite-horizon games and discounting 
•  Reputation 
•  Cooperative games 
•  Imperfect / incomplete information 
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•  Game theory can help modeling greedy 
behavior in wireless networks 

•  Discipline still in its infancy 
•  Alternative solutions 

– Ignore the problem 
– Build protocols in tamper-resistant hardware 
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