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static games, dynamic games, repeated games, strict and weak 
dominance, Nash equilibrium, Pareto optimality, and subgame perfection 
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•  Discipline aiming at modeling situations in which 
actors have to make decisions which have mutual, 
possibly conflicting, consequences 

•  Classical applications: economics, but also 
politics and biology 

•  Example: should a company invest in a new plant, 
or enter a new market, considering that the 
competition may make similar moves? 

•  Most widespread kind of game: non-cooperative 
(meaning that the players do not attempt to find 
an agreement about their possible moves) 
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Non-cooperative Cooperative 

Static Dynamic (repeated) 

Strategic-form Extensive-form 

Perfect information Imperfect information 

Complete information Incomplete information 

Cooperative 

Imperfect information 

Incomplete information 

Perfect information: each player can observe the action of each other player. 
 
Complete information: each player knows the identity of other players and,  
for each of them, the payoff resulting of each strategy. 
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•  Recent interest in networked-systems (communication, 
transportation networks, and electricity markets).  
–  Large-scale networks emerged from interconnections of smaller 

networks and their operation relies on various degrees of 
competition and cooperation.  

–  Online advertising on the Internet: Sponsored search auctions.  
–  Distributed control of competing heterogeneous users.  
–  Information evolution and belief propagation in social 

networks. 
–  Sustainability and smart grids.  

•  “Recently” applied to computer networks 
–  Nagle, RFC 970, 1985 

•  “datagram networks as a multi-player game” 
–  Paper in first volume of IEEE/ACM ToN (1993) 
–  Wider interest starting around 2000 6	
  



•  No unified solution to general conflict resolution 

❒  Real-­‐world	
  conflicts	
  are	
  complex	
  
❍ models	
  can	
  at	
  best	
  capture	
  important	
  aspects	
  

❒  Players	
  are	
  (usually)	
  considered	
  ra>onal	
  
❍ Determine	
  what	
  is	
  best	
  for	
  them	
  given	
  that	
  others	
  are	
  doing	
  
the	
  same	
  	
  

❒  No	
  unique	
  prescrip>on	
  
❍ Not	
  clear	
  what	
  players	
  should	
  do	
  

❒  But	
  it	
  can	
  provide	
  intui/ons,	
  sugges/ons	
  and	
  par/al	
  
prescrip/ons	
  
❍  best	
  mathema/cal	
  tool	
  we	
  currently	
  have	
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S1 

S2 

D1 
D2 

Usually, the devices are assumed to be cooperative.  
But what if they are not? 
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? 

? 

Blue Green 
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•  users controlling the devices are rational = try to 
maximize their benefit 

•  game formulation: G = (P,S,U) 
–  P: set of players 
–  S: set of strategy functions 
–  U: set of payoff functions 

•  strategic-form representation  

•  Reward for packet reaching    
the destination: 1 
•  Cost of packet forwarding:  
  c (0 < c << 1) 

(1-c, 1-c) (-c, 1) 
(1, -c) (0, 0) 

Blue 
Green 

Forward 

Drop 

Forward Drop 
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' '( , ) ( , ), ,i i i i i i i i i iu s s u s s s S s S− − − −< ∀ ∈ ∀ ∈

iu U∈
i is S− −∈

Strict dominance: strictly best strategy, for any strategy of the other player(s)  

where: payoff function of player i 

strategies of all players except  player i 

In Example 1, strategy Drop strictly dominates strategy Forward 

(1-c, 1-c) (-c, 1) 
(1, -c) (0, 0) 

Blue 
Green 

Forward 

Drop 

Forward Drop 

Strategy    strictly dominates if is
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Solution by iterative strict dominance: 

(1-c, 1-c) (-c, 1) 
(1, -c) (0, 0) 

Blue 
Green 

Forward 

Drop 

Forward Drop 

Drop strictly dominates Forward 
Dilemma 

Forward would result in a better outcome 
BUT }
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(2, 9) (0, 6) (0, 4) (1, 2) 
(1, 3) (3, 6) (6, 1) (6, 3) 
(4, 2) (4, 1) (2, 2) (8, 3) 
(3, 7) (4, 5) (2, 6) (4, 7) 

Blue 
Green 

A 
B 

X Y V W 

C 

D 

Strict dominance: strictly best strategy, for any strategy of the other player(s)  
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(1, 1) (-1, 2) 

(2, -1) (0, 0) 

Country 1 

Country 2 

Reduce military  
investment 

Increase military 
investment 

Payoffs: 
²  2:  I have weaponry superior to the one of the opponent 
²  1:  We have equivalent weaponry and managed to reduce it on both sides 
²  0:  We have equivalent weaponry and did not managed to reduce it on both sides 
²  -1:  My opponent has weaponry that is superior to mine 

An	
  Example	
  beyond	
  Engineering	
  

Reduce military  
investment 

Increase military 
investment 
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? 
Blue Green Source Dest 

? 

No strictly dominated strategies ! 

•  Reward for packet reaching    
the destination: 1 
•  Cost of packet forwarding:  
  c (0 < c << 1) 

(1-c, 1-c) (-c, 0) 
(0, 0) (0, 0) 

Blue 
Green 

Forward 
Drop 

Forward Drop 
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? 
Blue Green Source Dest 

? 

'( , ) ( , ),i i i i i i i iu s s u s s s S− − − −≤ ∀ ∈

Weak dominance: strictly better strategy for at least one opponent strategy  

with strict inequality for at least one s-i 

Iterative weak dominance 
(1-c, 1-c) (-c, 0) 

(0, 0) (0, 0) 

Blue 

Green 

Forward 

Drop 

Forward Drop 

BUT 

The result of the iterative weak 
dominance is not unique in general !  

Strategy s’i  is weakly dominated by strategy si if 
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(3, 9) (0, 6) (0, 4) (1, 2) 
(1, 3) (3, 6) (6, 1) (6, 3) 
(4, 2) (4, 1) (2, 2) (8, 2) 
(3, 7) (4, 5) (2, 6) (4, 7) 

Blue 
Green 

A 
B 

X Y V W 

C 

D 

Weak dominance: strictly better strategy for at least one opponent strategy  
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Nash Equilibrium: no player can increase its payoff by deviating unilaterally 

(1-c, 1-c) (-c, 1) 
(1, -c) (0, 0) 

Blue 
Green 

Forward 

Drop 

Forward Drop 
E1: The Forwarder’s 
Dilemma 

E2: The Joint Packet 
Forwarding game (1-c, 1-c) (-c, 0) 

(0, 0) (0, 0) 

Blue 
Green 

Forward 

Drop 

Forward Drop 
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* * *( , ) ( , ),i i i i i i i iu s s u s s s S− −≥ ∀ ∈

iu U∈
i is S∈

where: payoff function of player i 
strategy of player i 

( ) argmax ( , )
i i

i i i i i
s S

b s u s s− −
∈

=

The best response of player i to the profile of strategies s-i is  
a strategy si such that: 

Nash Equilibrium = Mutual best responses 

Caution!  Many games have more than one Nash equilibrium 

Strategy profile s* constitutes a Nash equilibrium if, for each player i,  
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Reward	
  for	
  successful	
  
transmission:	
  1	
  
	
  
Cost	
  of	
  transmission:	
  c	
  
(0	
  <	
  c	
  <<	
  1)	
  

There is no strictly dominating strategy 

(0, 0) (0, 1-c) 
(1-c, 0) (-c, -c) 

Blue 
Green 

Quiet 

Transmit 

Quiet Transmit 

There are two Nash equilibria 

Time-division channel 
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objectives 
–  Blue: choose p to maximize ublue 

–  Green: choose q to maximize ugreen 

(1 )(1 ) (1 )blueu p q c pqc p c q= − − − = − −
(1 )greenu q c p= − −

p * =1−c , q * =1−c

p: probability of transmit for Blue 
q: probability of transmit for Green 

is a Nash equilibrium 

q	
  
1	
  

1-­‐c	
  

BRG(p)	
  

BRB(q)	
  

p	
  1	
  1-­‐c	
  



transmiSer:	
  
• 	
  reward	
  for	
  successful	
  
transmission:	
  1	
  
• 	
  loss	
  for	
  jammed	
  
transmission:	
  -­‐1	
  
	
  
jammer:	
  
• 	
  reward	
  for	
  successful	
  
jamming:	
  1	
  
• 	
  loss	
  for	
  missed	
  jamming:	
  
-­‐1	
  
	
  

There is no pure-strategy 
Nash equilibrium 

two channels:  
C1 and C2 

(-1, 1) (1, -1) 
(1, -1) (-1, 1) 

Blue 
Green 

C1 

C2 

C1 C2 

transmitter 

jammer 

1 1,
2 2

p q= = is a Nash equilibrium 

p: probability of transmit   
on C1 for Blue 
q: probability of transmit 
on C1 for Green 
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E2: The Joint 
Packet Forwarding 
game 

(1-c, 1-c) (-c, 0) 
(0, 0) (0, 0) 

Blue 
Green 

Forward 

Drop 

Forward Drop 

How to choose between several Nash equilibria ? 
Pareto-optimality: A strategy profile is Pareto-optimal if it is not 
possible to increase the payoff of any player without decreasing the 
payoff of another player. 
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(3, 9) (0, 6) (0, 4) (1, 2) 
(1, 3) (3, 6) (6, 1) (6, 3) 
(4, 2) (4, 1) (2, 2) (8, 2) 
(3, 7) (4, 5) (2, 6) (4, 7) 

Blue 
Green 

A 
B 

X Y V W 

C 

D * *

*

*

Pareto-optimality: It is not possible to increase the payoff of any player 
without decreasing the payoff of another player. 
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Properties of Nash equilibria to investigate: 

•  uniqueness 
•  efficiency (Pareto-optimality) 
•  emergence (dynamic games, agreements) 
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