

Security and Privacy in Wireless Networks

Mohammad Hossein Manshaei manshaei@gmail.com

ESTABLISHMENT OF SECURITY ASSOCIATIONS

key establishment in sensor networks and ad hoc networks, exploiting physical contact, vicinity, and node mobility, Revocation

Chapter 5: (secowinet.epfl.ch)

Chapter Outline

5.1 Key establishment in sensor networks

- 5.2 Exploiting physical contact
- 5.3 Exploiting mobility
- 5.4 Exploiting the properties of vicinity and of the radio link
- 5.5 Revocation

Key Establishment in Sensor Networks

- Due to resource constraints, asymmetric key cryptography should be avoided in sensor networks
- > We aim at setting up symmetric keys
- > Requirements for key establishment depend on
 - communication patterns to be supported
 - unicast
 - local broadcast
 - global broadcast
 - need for supporting in-network processing
 - need to allow passive participation
- > Necessary key types
 - **node keys** shared by a node and the base station
 - link keys pairwise keys shared by neighbors
 - **cluster keys** shared by a node and all its neighbors
 - network key a key shared by all nodes and the base station

Setting up Node, Cluster, and Network Keys

> Node key

– can be preloaded into the node before deployment

Cluster key

 can be generated by the node and sent to each neighbor individually protected by the link key shared with that neighbor

> Network key

- can also be preloaded in the nodes before deployment
- needs to be refreshed from time to time (due to the possibility of node compromise)
 - neighbors of compromised nodes generate new cluster keys
 - the new cluster keys are distributed to the non-compromised neighbors
 - the base station generates a new network key
 - the new network key is distributed in a hop-by-hop manner protected with the cluster keys

Design Constraints for Link Key Establishment

> Network lifetime

severe constraints on energy consumption

Hardware limits

- 8-bit CPU, small memory
- large integer arithmetics are infeasible

> No tamper resistance

- nodes can be compromised
- secrets can be leaked

> No a priori knowledge of post-deployment topology

- it is not known a priori who will be neighbors

> Gradual deployment

need to add new sensors after deployment

Traditional Approaches

> Use of public key crypto (e.g., Diffie-Hellman)

- limited computational and energy resources of sensors

> Use of a trusted key distribution server (Kerberos-like)

- base station could play the role of the server
- requires routing of key establishment messages to and from the base station
 - routing may already need link keys
 - unequal communication load on the sensors
- base station becomes single point of failure

> Pre-loaded link keys in sensors

- post-deployment topology is unknown
- single "mission key" approach
 - vulnerable to single node compromise
- *n* -1 keys in each of the *n* sensors
 - excessive memory requirements
 - gradual deployment is difficult
 - Doesn't scale

Link Key Setup Using a Short-term Master Key

Sensor networks: stationary nodes, neighborhood of a node does not change frequently

>Link key establishment protocol:

- 1. Master key pre-loading
- 2. Neighbor discovery
- 3. Link key computation
- 4. Master key deletion

Link Key Setup using a Short-term Master Key

1. Master key pre-loading:

- Before deployment
- Master key K_{init} is loaded into the nodes
- Each node u computes $K_u = f_{Kinit}(u)$ [f is a pseudo-random function]

2. Neighbor discovery:

- After the deployment
- Node u initializes a timer
- Discovers its neighbors: HELLO message
- Neighbor v responds with ACK
- ACK: identifier of v, authenticated with K_v
- u verifies ACK

3. link key computation:

– link key: $K_{uv}=f_{Kv}$ (u).

4. Master key deletion:

– When timer expires: u deletes K_{init} and all K_{ν}

Pairwise Key Establishment in Sensor Networks

Do we have a common key?

Probability for any 2 nodes to have a common key:

$$p = 1 - \frac{((k-m)!)^2}{k!(k-2m)!}$$

Random Key Pre-distribution – Preliminaries

Given a set *S* of *k* elements, we randomly choose two subsets S_1 and S_2 of m_1 and m_2 elements, respectively, from *S*. The probability of $S_1 \cap S_2 \neq \emptyset$ is

The basic random key predistribution scheme

Initialization phase

- a large pool S of unique keys are picked at random
- for each node, m keys are selected randomly from S and pre-loaded in the node (key ring)

> Direct key establishment phase

- after deployment, each node finds out with which of its neighbors it shares a key (e.g., each node may broadcast the list of its key IDs)
- two nodes that discover that they share a key verify that they both actually posses the key (e.g., execute a challenge-response protocol)

> Path key establishment phase

- neighboring nodes that do not have a common key in their key rings establish a shared key through a path of intermediaries
- each link of the path is secured in the direct key establishment phase

Setting the Parameters

- Connectivity of the graph resulting after the direct key establishment phase is crucial
- A result from random graph theory [Erdős-Rényi]: in order for a random graph to be connected with probability c (e.g., c = 0.9999), the expected degree d of the vertices should be:

$$d = \frac{n-1}{n} (\ln(n) - \ln(-\ln(c)))$$
(1)

- In our case, d = pn' (2), where p is the probability that two nodes have a common key in their key rings, and n' is the expected number of neighbors (for a given deployment density)
- \succ p depends on the size k of the pool and the size m of the key ring

$$p = 1 - \frac{\left((k-m)!\right)^2}{k!(k-2m)!}$$
(3)
> $c \xrightarrow{(1)} d \xrightarrow{(2)} p \xrightarrow{(3)} k, m$

Setting the Parameters – An Example

- > number of nodes: n = 10000
- > expected number of neighbors: n' = 40
- required probability of connectivity after direct key establishment: c
 = 0.9999
- ➤ using (1):

required node degree after direct key establishment: d = 18.42

➤ using (2):

required probability of sharing a key: p = 0.46

➤ using (3):

appropriate key pool and key ring sizes:

- k = 100000, m = 250
- k = 10000, m = 75

Qualitative Analysis

> advantages:

- parameters can be adopted to special requirements
- no need for intensive computation
- path key establishment have some overhead ...
 - decryption and re-encryption at intermediate nodes
 - communication overhead
- but simulation results show that paths are not very long (2-3 hops)
- no assumption on topology
- easy addition of new nodes

> Disadvantages:

- node capture affects the security of non-captured nodes too
 - if a node is captured, then its keys are compromised
 - these keys may be used by other nodes too
- if a path key is established through captured nodes, then the path key is compromised
- no authentication is provided

Improvements: q-composite rand key pre-distribution

basic idea:

- two nodes can set up a shared key if they have at least q common keys in their key rings
- the pairwise key is computed as the hash of all common keys

> advantage:

 in order to compromise a link key, all keys that have been hashed together must be compromised

> disadvantage:

- probability of being able to establish a shared key directly is smaller (it is less likely to have *q* common keys, than to have one)
- key ring size should be increased (but: memory constraints) or key pool size should be decreased (but: effect of captured nodes)

Improvements: Multipath key reinforcement

basic idea:

- establish link keys through multiple disjoint paths
- assume two nodes have a common key K in their key rings
- one of the nodes sends key shares $k_1, ..., k_j$ to the other through *j* disjoint paths
- the key shares are protected during transit by keys that have been discovered in the direct key establishment phase
- the link key is computed as $K + k_1 + ... + k_j$

radio connectivity

shared key connectivity

multipath key reinforcement

Improvements: Multipath key Reinforcement

> Advantages:

 in order to compromise a link key, at least one link on each path must be compromised → increased resilience to node capture

> Disadvantages:

increased overhead

> Note:

multipath key reinforcement can be used for path key setup too

Polynomial Based Key Pre-Distribution

> Let f be a bivariate t-degree polynomial over a finite field GF(q), where q is a large prime number, such that f(x, y) = f(y, x)

$$f(x,y) = \sum_{i,j=0}^{t} a_{ij} x^{i} y^{j}$$

- Each node is pre-loaded with a polynomial share f(i, y), where i is the ID of the node
- > Any two nodes i and j can compute a shared key by
 - i evaluating f(i, y) at point j and obtaining f(i, j), and
 - j evaluating f(j, y) at point i and obtaining f(j, i) = f(i, j)
- > This scheme is unconditionally secure and t-collision resistant
 - any coalition of at most t compromised nodes knows nothing about the shared keys computed by any pair of non-compromised nodes
- Any pair of nodes can establish a shared key without communication overhead (if they know each other's ID)
- > Memory requirement of the nodes is $(t + 1) \log(q)$
- > **problem:** t is limited by the memory constraints of the sensors

Polynomial Based Random Key Pre-distribution

> **Operation:**

- let S be a pool of bivariate t-degree polynomials
- for each node i, we pick a subset of m polynomials from the pool
- we pre-load into node i the polynomial shares of these m polynomials computed at point i
- two nodes that have polynomial shares of the same polynomial f can establish a shared key f(i, j)
- if two nodes have no common polynomials, they can establish a shared key through a path of intermediaries

> Advantage:

- can tolerate the capture of much more than t nodes (t can be smaller, but each node needs to store m polynomials)
 - in order to compromise a polynomial, the adversary needs to obtain t + 1 shares of that polynomial
 - it is very unlikely that t + 1 randomly captured nodes have all selected the same polynomial from the pool

Chapter Outline

5.1 Key establishment in sensor networks

- 5.2 Exploiting physical contact
- 5.3 Exploiting mobility
- 5.4 Exploiting the properties of vicinity and of the radio link
- 5.5 Revocation

Exploiting physical contact

> Target scenarios

- modern home with multiple remotely controlled devices
 - DVD, VHS, HiFi, doors, air condition, lights, alarm, ...
- modern hospital
 - mobile personal assistants and medical devices, such as thermometers, blood pressure meters, ...

Common in these scenarios

- transient associations between devices
- physical contact is possible for initialization purposes

> the *resurrecting duckling* security policy

- at the beginning, each device has an **empty** *soul*
- each empty device accepts the first device to which it is physically connected as its master (imprinting)
- during the physical contact, a device key is established
- the master uses the device key to execute commands on the device, including the *suicide* command
- after suicide, the device returns to its empty state and it is ready to be imprinted again

Chapter Outline

5.1 Key establishment in sensor networks

- 5.2 Exploiting physical contact
- 5.3 Exploiting mobility
- 5.4 Exploiting the properties of vicinity and of the radio link
- 5.5 Revocation

Does mobility increase or reduce security ?

- > Mobility is usually perceived as a major security challenge
 - Wireless communications
 - Unpredictable location of the user/node
 - Sporadic availability of the user/node
 - Higher vulnerability of the device
 - Reduced computing capability of the devices
- > However, very often, people *gather and move* to increase security
 - Face to face meetings
 - Transport of assets and documents
 - Authentication by physical presence
- In spite of the popularity of PDAs and mobile phones, this mobility has not been exploited to provide digital security
- So far, client-server security has been considered as a priority (ebusiness)
- Peer-to-peer security is still in its infancy

Two scenarios

- > Mobile ad hoc networks with a central authority
 - off-line or on-line authority
 - nodes or authorities generate keys
 - authorities certify keys and node ids
 - authorities control network security settings and membership
- Fully self-organized mobile ad hoc networks
 - no central authority (not even in the initialization phase !)
 - each user/node generates its own keys and negotiates keys with other users
 - membership and security controlled by users themselves

Fully self organized

Secure routing requirements and assumptions

- > A network controlled by a **central authority**
- All security associations established between all nodes prior to protocol execution
- The most stringent assumption: Routes are established exclusively between nodes with which the source and the destination have security associations

> Secure routing proposals

- Securing Ad Hoc Routing Protocols, Zappata, Asokan; WiSe, 2002
- Ariadne, Hu, Perrig, Johnson; MobiCom 2002
- Secure Routing for Ad Hoc Networks, Papadimitratos, Haas; CNDS, 2002
- A Secure Routing Protocol for Ad Hoc Networks, Sanzgiri et al. ICNP; 2002
- **SEAD**, Hu, Perrig, Johnson; WMCSA 2002
- + several other since then (more about this in Chapter 7)

Routing – security interdependence

Routing cannot work until security associations are set up

Security associations cannot be set up via multi-hop routes because routing does not work

Existing solutions:

- Preloading all pairs of keys into nodes (it makes it difficult to introduce new keys and to perform rekeying)
- On-line authentication servers (problematic availability and in some cases routing-security interdependence, rekeying)
- CAM, SUCV

Mobility helps security of routing

Each node holds a certificate that binds its id with its public key, signed by the CA

The establishment of security associations within power range breaks the routing-security interdependence cycle

Advantages of the mobility approach (1/2)

- Mobile ad hoc networks with authority-based security systems
 - breaks the routing-security dependence circle
 - automatic establishment of security associations
 - no user involvement
 - associations can be established in power range
 - only off-line authorities are needed
 - straightforward re-keying

Fully Self-organized Scenario

Two Binding Techniques

Binding of the face or person name with his/her public key

: by the Secure Side Channel, the Friend mechanism and the appropriate protocols

Binding of the public key with the NodeId

: by Cryptographically Generated Addresses Assumption: *static* allocation of the NodeId: *NodeId* = *h*(*PuK*)

Friends mechanism

Colin and Bob are *friends*:

- They have established a Security Association at initialisation
- They faithfully share with each other the Security Associations they have set up with other users

Mechanisms to establish Security Associations

Note: there is no transitivity of trust (beyond your friends)

Direct Establishment of a Security Association

$\begin{aligned} & u \\ \text{Given } a_u, \text{ pick } r_u \\ \xi_u &= h(r_u \ U \ k_u \ a_u) \end{aligned}$	a	v Given a_v , pick r_v $\xi_v = h(r_v V k_v a_v)$
Verify $h(r_v V k_v a_v) = \xi_v$ Compare V; $match(k_v, a_v)$?	$ \begin{array}{c} a_v \ \xi_v \\ \hline r_u \ U \ k_u \ a_u \\ \hline r_v \ V \ k_v \ a_v \\ \end{array} $	Verify $h(r_u U k_u a_u) = \xi_u$ Compare U; $match(k_u, a_u)$?
	$\sigma_{v}(r_{u}\ V\ U)$	Legend Radio channel:

Friend-Assisted Establishment of a Security Association

Advantages of the mobility approach (2/2)

Fully self-organized mobile ad hoc networks

- There are no central authorities
- Each user/node generates its own public/private key pairs
- (No) trust transitivity
- Intuitive for users
- Can be easily implemented (vCard)
- Useful for setting up security associations for secure routing in smaller networks or peer-to-peer applications
- Requires some time until network is fully secure
- User/application oriented

Pace of establishment of the security associations

> Depends on several factors:

- Area size
- Number of communication partners: *s*
- Number of nodes: *n*
- Number of friends
- Mobility model and its parameters (speed, pause times, ...)

Desired security associations : Established security associations :

 $p_{ij} = \begin{cases} 1\\ 0 \end{cases}$

if *i* wants to know the public key
and address of node *j*
$$e_{ij}(t) = \begin{cases} 1 & \text{if, at t} \\ & \text{and ad} \\ 0 & \text{otherwise} \end{cases}$$

 $\left\{ \begin{array}{ll} 1 & \text{if, at time } t, \ i \text{ knows the public key} \\ & \text{and address of node } j \\ 0 & \text{otherwise} \end{array} \right.$

Convergence :
$$r(t) = \frac{\sum_{i,j} e_{ij}(t) \cdot p_{ij}}{\sum_{i,j} p_{ij}}$$

and the convergence time t_M is the earliest time at which r(t) = 1.

Mobility Models

Random walk

- discrete time
- simple, symmetric random walk
- **area:** Bounded and toroid grids (33x33, 100x100, 333x333)
- **number of nodes:** 100

Random waypoint

- most commonly used in mobile ad hoc networks
- continuous time
- area size: 1000m x1000m
- max speed: 5m/s, 20m/s
- pause time: 5s, 100s, 200s
- security power range: 5m (SSC), 50m 100m (radio)

Common simulation settings

- simulations are run 20 times
- confidence interval: 95%

(Restricted) random waypoint

- Restricts the movement of nodes to a set of points with a predefined probability
- Regular random waypoint is a special case ($\phi = 0$)

Size Matters

----- s=99, f=0, pause=100 s, sr=5 m, v=20 m/s

Security range matters

Meeting points help

43

-- s=99, f=0, pause=300 s, sr=100 m, v=5 m/s

s=99, 1=0, pause=100 s, sr=100 m, v=5 m/s

Conclusion (Section 5.3)

- Mobility can help security in mobile ad hoc networks, from the networking layer up to the applications
- Mobility "breaks" the security-routing interdependence cycle
- The pace of establishment of the security associations is strongly influenced by the area size, the number of friends, and the speed of the nodes
- The proposed solution also supports re-keying
- The proposed solution can easily be implemented with both symmetric and asymmetric crypto

Chapter Outline

5.1 Key establishment in sensor networks

- 5.2 Exploiting physical contact
- 5.3 Exploiting mobility
- 5.4 Exploiting the properties of vicinity and of the radio link
- 5.5 Revocation

Exploiting Vicinity

> problem

– how to establish a shared key between two PDAs?

> assumptions

- no CA, no KDC
- PDAs can use short range radio communications (e.g., Bluetooth)
- PDAs have a display
- PDAs are held by human users

≻ idea

- use the Diffie-Hellman key agreement protocol
- ensure key authentication by the human users

Diffie-Hellman with String

Theorem: the probability that an attacker succeeds against the above protocol is bounded by nγ2^{-k}, where n is the total number of users, γ is the maximum number of sessions that any party can participate in, and k is the security parameter

Integrity Codes

- > Is it possible to rely on the radio channel only?
- > Assumption
 - it is possible to implement a channel with the following property:
 - bit 0 can be turned into bit 1
 - bit 1 cannot be turned into bit 0
 - an example:
 - bit 1 = presence of random signal (~noise)
 - bit 0 = no signal at all
- i(ntegrity)-codes
 - each codeword has the same number of 0s and 1s
 - such a codeword cannot be modified in an unnoticeable way
 - encoding messages with i-codes ensures the integrity of the communications \rightarrow Man-in-the-Middle is excluded

Chapter Outline

5.1 Key establishment in sensor networks

- 5.2 Exploiting physical contact
- 5.3 Exploiting mobility
- 5.4 Exploiting the properties of vicinity and of the radio link
- 5.5 Revocation

Revocation

> Methods of revocation proposed in the IEEE P1609.2:

- distribution of CRLs (Certificate Revocation Lists)
- Using short-lived certificates

Drawbacks:

- CRLs can be very long
- Short lifetime creates a vulnerability window
- Solution: based on
 - RTPD (Revocation Protocol of the Tamper-Proof Device)
 - RCCRL (Revocation protocol using Compressed Certificate Revocation Lists)
 - DRP (Distributed Revocation Protocol).

Revocation (RTDP)

Revocation

> RCCRL:

- when the CA wants to revoke only a subset of a vehicle's keys
- or when the TPD of the target vehicle is unreachable

> DRP:

- Is used in the pure ad hoc mode
- Vehicles accumulate accusations against misbehaving vehicles, evaluate them using a reputation system
- If misbehavior: report them to the CA

- It is possible to establish pairwise shared keys in ad hoc networks without a globally trusted third party
- Mobility, secure side channels, and friends are helpful
- In sensor networks, we need different types of keys
 - node keys, cluster keys, and network keys can be established relatively easily using the technique of key pre-loading and using already established link keys
 - link keys can be established using a short-term master key or with the technique of random key predistribution