
Mohammad Hossein Manshaei
manshaei@gmail.com

Appendix A
Security and Cooperation in Wireless Networks

secowinet.epfl.ch

Some materials are derived from those available on the Web site of the book
“Computer Networking”, by Kurose and Ross, PEARSON

Ø  Asymmetric-key Encryption
Ø  Message Authentication Codes and Hash

Function
Ø  Digital Signature
Ø  Session Key Establishment Protocols
Ø  Pseudo-Random Generator
Ø  Advanced Authentication Techniques

3	

symmetric key
crypto

•  requires sender,
receiver know shared
secret key

•  Q: how to agree on key
in first place (particularly
if never “met”)?

public key crypto
v  radically different

approach [Diffie-
Hellman76, RSA78]

v  sender, receiver do not
share secret key

v  public encryption key
known to all

v  private decryption key
known only to receiver

plaintext
message, m

ciphertext encryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
message

K (m)
B
+

K B
+

Bob’s private
key

K
B
-

m = K (K (m)) B
+

B
-

5	

Need K () and K () such that B B
. .

Given public key K , it should be
impossible to compute private
key K

B

B

Requirements:

1

2

RSA: Rivest, Shamir, Adelson algorithm

+ -

K (K (m)) = m
B B

- +

+

-

6	

Ø x mod n = remainder of x when divide by n
Ø Facts:

² [(a mod n) + (b mod n)] mod n = (a+b) mod n
² [(a mod n) - (b mod n)] mod n = (a-b) mod n
² [(a mod n) * (b mod n)] mod n = (a*b) mod n

Ø Thus
² (a mod n)d mod n = ad mod n

Ø Example: x=14, n=10, d=2:
(x mod n)d mod n = 42 mod 10 = 6
xd = 142 = 196 xd mod 10 = 6

7	

Ø Message: just a bit pattern
Ø Bit pattern can be uniquely represented by an integer

number
Ø  Thus, encrypting a message is equivalent to encrypting a

number.

Example:
Ø m= 10010001 . This message is uniquely represented by

the decimal number 145.
Ø  To encrypt m, we encrypt the corresponding number,

which gives a new number (the ciphertext).

8	

1. Choose two large prime numbers p, q.
 (e.g., 1024 bits each)
2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
 with z (e, z are “relatively prime”).
4. Choose d such that ed-1 is exactly divisible by z.
 (in other words: ed mod z = 1).

5. Public key is (n,e). private key is (n,d).

K B
+ K B

-

9	

0. Given (n,e) and (n,d) as computed above

1. To encrypt message m (<n), compute
c = m mod n e

2. To decrypt received bit pattern, c, compute
m = c mod n d

m = (m mod n) e mod n d magic
happens!

c

10	

Bob chooses p=5, q=7. Then n=35, z=24.
e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z).

bit pattern m m e c = m mod n e

0000l000 12 24832 17
encrypt:

encrypting 8-bit messages.

c m = c mod n d

17 481968572106750915091411825223071697 12

c d
decrypt:

11	

Ø must show that cd mod n = m
where c = me mod n

Ø  fact: for any x and y: xy mod n = x(y mod z) mod n
–  where n= pq and z = (p-1)(q-1)

Ø  thus,
 cd mod n = (me mod n)d mod n

 = med mod n
 = m(ed mod z) mod n
 = m1 mod n
 = m

12	

The following property will be very useful later:

K (K (m)) = m
B B

- +
K (K (m)) B B

+ -
=

use public key
first, followed by

private key

use private key
first, followed by

public key

result is the
same!

13	

follows directly from modular arithmetic:

(me mod n)d mod n = med mod n
 = mde mod n
 = (md mod n)e mod n

K (K (m)) = m
B B

- +
K (K (m)) B B

+ -
= Why ?

14	

•  Suppose you know Bob’s public key
(n,e). How hard is it to determine d?

•  Essentially need to find factors of n
without knowing the two factors p and q
–  fact: factoring a big number is hard

15	

Ø  Factoring problem
–  given a positive integer n, find its prime factors

•  true complexity is unknown
•  it is believed that it does not belong to P

Ø  Discrete logarithm problem
–  given a prime p, a generator g of Zp

*, and an element y in Zp
*, find the

integer x, 0 ≤ x ≤ p-2, such that gx mod p = y
•  true complexity is unknown
•  it is believed that it does not belong to P

Ø  Diffie-Hellman problem
–  given a prime p, a generator g of Zp

*, and elements gx mod p and gy
mod p, find gxy mod p

•  true complexity is unknown
•  it is believed that it does not belong to P

16	

•  Let us assume that the adversary observes a ciphertext
c = EK(m)

•  Let the set of possible plaintexts be M

•  If M is small, then the adversary can try to encrypt every
message in M with the publicly known key K until she finds
the message m that maps into c

•  The usual way to prevent this attack is to randomize the
encryption
–  some random bytes are added to the plaintext message before

encryption through the application of the PKCS #1 formatting
rules

–  when the message is decrypted, the recipient can recognize and
discard these random bytes

17	

•  Exponentiation in RSA is computationally
intensive

•  DES is at least 100 times faster than RSA
•  Use public key crypto to establish secure

connection, then establish second key –
symmetric session key – for encrypting
data

Session key, KS
•  Bob and Alice use RSA to exchange a symmetric key KS
•  Once both have KS, they use symmetric key cryptography

18	

plaintext message

symmetric-key
cipher

(e.g., in CBC mode)

public key
of the receiver

asymmetric-key
cipher

digital envelop

generate random
symmetric key

bulk encryption key

19	

Ø  Key generation
–  generate a large random prime p and choose generator g of the

multiplicative group Zp
* = {1, 2, …, p-1}

–  select a random integer a, 1 ≤ a ≤ p-2, and compute A = ga mod p
–  the public key is (p, g, A)
–  the private key is a

Ø  Encryption
–  represent the message as an integer m in [0, p-1]
–  select a random integer r, 1 ≤ r ≤ p-2, and compute R = gr mod p
–  compute C = m⋅Ar mod p
–  the ciphertext is the pair (R, C)

Ø  Decryption
–  compute m = C⋅Rp-1-a mod p

Ø  Proof of decryption
 C⋅Rp-1-a ≡ m⋅Ar⋅Rp-1-a ≡ m⋅gar⋅gr(p-1-a) ≡ m⋅(gp-1)r ≡ m (mod p)

20	

•  Security of the ElGamal scheme is said to
be based on the discrete logarithm
problem in Zp

*, although equivalence has
not been proven yet

•  Recovering m given p, g, A, R, and C is
equivalent to solving the Diffie-Hellman
problem

21	

Ø  Asymmetric-key Encryption
Ø  Message Authentication Codes and Hash

Function
Ø  Digital Signature
Ø  Session Key Establishment Protocols
Ø  Pseudo-Random Generator
Ø  Advanced Authentication Techniques

22	

Problems and Possible Solutions

23	

Goal: Bob wants Alice to “prove” her identity
to him

Protocol ap1.0: Alice says “I am Alice”

Failure scenario??
“I am Alice”

24	

in a network,
Bob can not “see” Alice,
so Trudy simply declares

herself to be Alice “I am Alice”

Goal: Bob wants Alice to “prove” her identity
to him

Protocol ap1.0: Alice says “I am Alice”

25	

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

Failure scenario??

“I am Alice” Alice’s
IP address

26	

Trudy can create
a packet
“spoofing”

Alice’s address “I am Alice” Alice’s
IP address

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

27	

Protocol ap3.0: Alice says “I am Alice” and sends her
 secret password to “prove” it.

Failure scenario??

“I’m Alice” Alice’s
IP addr

Alice’s
password

OK Alice’s
IP addr

28	

playback attack: Trudy
records Alice’s packet

and later
plays it back to Bob

“I’m Alice” Alice’s
IP addr

Alice’s
password

OK Alice’s
IP addr

The image cannot be
displayed. Your computer
may not have enough
memory to open the
image, or the image may
have been corrupted.
Restart your computer,
and then open the file
again. If the red x still
appears, you may have to
delete the image and then

“I’m Alice” Alice’s
IP addr

Alice’s
password

Protocol ap3.0: Alice says “I am Alice” and sends her
 secret password to “prove” it.

29	

Protocol ap3.1: Alice says “I am Alice” and sends her
 encrypted secret password to “prove” it.

Failure scenario??

“I’m Alice” Alice’s
IP addr

encrypted
password

OK Alice’s
IP addr

30	

record
and

playback
still works!

“I’m Alice” Alice’s
IP addr

encrypted
password

OK Alice’s
IP addr

The image cannot be
displayed. Your computer
may not have enough
memory to open the
image, or the image may
have been corrupted.
Restart your computer,
and then open the file
again. If the red x still
appears, you may have to
delete the image and then

“I’m Alice” Alice’s
IP addr

encrypted
password

Protocol ap3.1: Alice says “I am Alice” and sends her
 encrypted secret password to “prove” it.

31	

•  Allows communicating parties to verify that
received messages are authentic.
– Content of message has not been altered
– Source of message is who/what you think it is
– Message has not been replayed
– Sequence of messages is maintained

•  Let’s first talk about message digests

32	

Ø  Function H() that takes as
input an arbitrary length
message and outputs a fixed-
length string: “message
signature”

Ø  Note that H() is a many-to-1
function à collisions are
unavoidable

Ø  H() is often called a “hash
function”

Ø  however, finding collisions are
difficult à the hash value of a
message can serve as a
compact representative image
of the message (similar to
fingerprints)

Ø  Desirable properties:
–  Easy to calculate
–  Irreversibility: Can’t

determine m from H(m)
–  Collision resistance:

Computationally difficult to
produce m and m’ such that
H(m) = H(m’)

–  Seemingly random output

large
message

m

H: Hash
Function

H(m)

33	

•  Ease of computation
–  given an input x, the hash value h(x) of x is easy to compute

•  Weak collision resistance (2nd preimage resistance)
–  given an input x, it is computationally infeasible to find a second

input x’ such that h(x’) = h(x)

•  Strong collision resistance (collision resistance)
–  it is computationally infeasible to find any two distinct inputs x

and x’ such that h(x) = h(x’)

•  One-way property (preimage resistance)
–  given a hash value y (for which no preimage is known), it is

computationally infeasible to find any input x s.t. h(x) = y

34	

Ø  Given a set of N elements, from which we draw k elements randomly
(with replacement). What is the probability of encountering at least one
repeating element?

Ø  First, compute the probability of no repetition:
–  the first element x1 can be anything
–  when choosing the second element x2, the probability of x2 ≠ x1 is 1-1/N
–  when choosing x3, the probability of x3 ≠ x2 and x3 ≠ x1 is 1-2/N
–  …
–  when choosing the k-th element, the probability of no repetition is 1-

(k-1)/N
–  the probability of no repetition is (1 - 1/N)(1 - 2/N)…(1 – (k-1)/N)
–  when x is small, (1-x) ≈ e-x

–  (1 - 1/N)(1 - 2/N)…(1 – (k-1)/N) = e-1/Ne-2/N … e-(k-1)/N = e-k(k-1)/2N

Ø  The probability of at least one repetition after k drawing is
 1 – e-k(k-1)/2N

35	

Ø  How many drawings do you need, if you want the probability of at least
one repetition to be ε ?

Ø  Solve the following for k:
 ε = 1 – e-k(k-1)/2N
 k(k-1) = 2N ln(1/1-ε)
 k ≈ sqrt(2N ln(1/1-ε))

Ø  Examples:
	
ε = ½ à k ≈ 1.177 sqrt(N)
	
ε = ¾ à k ≈ 1.665 sqrt(N)
	
ε = 0.9 à k ≈ 2.146 sqrt(N)

Ø  Origin of the name “Birthday Paradox”:
–  elements are dates in a year (N = 365)
–  among 1.177 sqrt(365) ≈ 23 randomly selected people, there will be at least

two that have the same birthday with probability ½

36	

•  The Birthday Paradox have a profound
impact on the design of hash functions (and
other cryptographic algorithms and
protocols)!
–  Let n be the output size of a hash function
– Among ~sqrt(2n) = 2n/2 randomly chosen

messages, with high probability, there will be
a collision pair

–  It is easier to find collisions than to find preimages
or 2nd preimages for a given hash value

à in order to resist birthday attacks, 2n/2 should be
sufficiently large (e.g., n = 160 bits)

37	

Ø  Input is divided into fixed length blocks x1, x2, …, xL

Ø  Last block is padded if necessary
–  Merkle-Damgard strengthening: padding contains the length of the message

Ø  Each input block is processed according to the following scheme

Ø  f is called the compression function
–  can be based on a block cipher, or
–  can be a dedicated compression function

x1

CV0

(b)

(n) (n)

CV1

f

x2

(b)

(n)

CV2

f

x3

(b)

(n)

CV3

f

xL

(b)

(n) h(x) = CVL
f

CVL-1

…	

38	

•  MD5 hash function widely used (RFC 1321)
–  computes 128-bit message digest in 4-step process.

•  SHA-1 is also used.
–  US standard [NIST, FIPS PUB 180-1]
–  160-bit message digest

39	

m
es

sa
ge

H()

s	

	
	

m
es

sa
ge

	
	

m
es

sa
ge

	
	

s	

H() 	
	

	
	

compare

s = shared secret

•  Authenticates sender
•  Verifies message integrity
•  No encryption !
•  Also called “keyed hash”
•  Notation: MDm = H(s||m) ; send m||MDm

40	

•  Ease of computation
–  given an input x and a secret key k, it is easy to compute

MACk(x)

•  Key non-recovery
–  it is computationally infeasible to recover the secret key k,

given one or more text-MAC pairs (xi, MACk(xi)) for that k

•  Computation resistance
–  given zero or more text-MAC pairs (xi, MACk(xi)), it is

computationally infeasible to find a text-MAC pair (x,
MACk(x)) for any new input x ≠ xi

–  computation resistance implies key non-recovery but the
reverse is not true in general

41	

Ø  Popular MAC standard
Ø  Addresses some subtle security flaws
Ø  How it works:

1.  Concatenates secret to front of message.
2.  Hashes concatenated message
3.  Concatenates the secret to front of digest
4.  Hashes the combination again.

42	

k+ ⊕ ipad

CV0
f

x1

f

xL|padding1

f

k+ ⊕ opad

CV0
f

M|padding2

f

M
CV1

inner

CV1
outer

HMACk(x)

…	

hash	 fn	

hash	 fn	

HMACk(X)	 =	 H(k’’|H(k’|X))	

43	

Ø  CBC MAC is secure for messages of a fixed
number of blocks

Ø  (adaptive chosen-text existential) forgery is
possible if variable length messages are
allowed

à it is recommended to involve the length of
 the message in the CBC MAC computation

E

x1

k

+

E

x2

k

+

E

x3

k

+

E

xN

cN

k

+ 0 cN-1

…

c1 c2 c3
E-1

E

k’

k

MAC

optional

44	

•  Want to be sure of the originator of the
message – end-point authentication.

•  Assuming Alice and Bob have a shared
secret, will MAC provide end-point
authentication.
– We do know that Alice created the message.
– But did she send it?

45	

The image cannot be
displayed. Your computer
may not have enough
memory to open the image,
or the image may have been
corrupted. Restart your
computer, and then open
the file again. If the red x
still appears, you may have
to delete the image and
then insert it again.

MAC Transfer $1M
from Bill to Trudy

MAC Transfer $1M from
Bill to Trudy

Playback attack
MAC =
f(msg,s)

46	

“I am Alice”

R

MAC Transfer $1M
from Bill to Susan

MAC =
f(msg,s,R)

Defending against playback
attack: nonce

47	

Goal: avoid playback attack

Failures, drawbacks?

nonce: number (R) used only once-in-a-lifetime
ap4.0: to prove Alice “live”, Bob sends Alice nonce, R.
Alice must return R, encrypted with shared secret key

“I am Alice”

R

K (R) A-B
Alice is live, and
only Alice knows
key to encrypt

nonce, so it must
be Alice!

48	

ap4.0 requires shared symmetric key
•  can we authenticate using public key

techniques?
ap5.0: use nonce, public key cryptography

“I am Alice”

R
Bob computes

K (R) A

-

“send me your public key”

K A
+

(K (R)) = R A
-

K A
+

and knows only Alice
could have the private
key, that encrypted R

such that
(K (R)) = R A

-
K A

+

49	

Ø  Asymmetric-key Encryption
Ø  Message Authentication Codes and Hash

Function
Ø  Digital Signature
Ø  Session Key Establishment Protocols
Ø  Pseudo-Random Generator
Ø  Advanced Authentication Techniques

50	

Cryptographic technique analogous to hand-
written signatures.

Ø Sender (Bob) digitally signs document, establishing
he is document owner/creator.

Ø Goal is similar to that of a MAC, except now use
public-key cryptography

Ø Verifiable, nonforgeable: recipient (Alice) can prove
to someone that Bob, and no one else (including
Alice), must have signed document

51	

Simple digital signature for message m:
Ø Bob signs m by encrypting with his private key KB,

creating “signed” message, KB(m) -
-

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key K B

-

Bob’s message,
m, signed

(encrypted) with
his private key

K B
- (m)

52	

large
message

m
H: Hash
function H(m)

digital
signature
(encrypt)

Bob’s
private

key K B
-

+

Bob sends digitally signed
message:

Alice verifies signature and
integrity of digitally signed
message:

KB(H(m)) -

encrypted
msg digest

KB(H(m)) -

encrypted
msg digest

large
message

m

H: Hash
function

H(m)

digital
signature
(decrypt)

H(m)

Bob’s
public

key K B
+

equal
 ?

Digital Signature = Signed Message Digest

•  Suppose Alice receives msg m, digital signature KB(m)
•  Alice verifies m signed by Bob by applying Bob’s public

key KB to KB(m) then checks KB(KB(m)) = m.
•  If KB(KB(m)) = m, whoever signed m must have used

Bob’s private key.

+ +

-

-

- -

+

Alice thus verifies that:
➼ Bob signed m.
➼ No one else signed m.
➼ Bob signed m and not m’.

Non-repudiation:
ü  Alice can take m, and signature KB(m) to court and

prove that Bob signed m.

-

54	

•  Motivation: Trudy plays pizza prank on Bob
– Trudy creates e-mail order:

Dear Pizza Store, Please deliver to me four
pepperoni pizzas. Thank you, Bob

– Trudy signs order with her private key
– Trudy sends order to Pizza Store
– Trudy sends to Pizza Store her public key, but

says it’s Bob’s public key.
– Pizza Store verifies signature; then delivers four

pizzas to Bob.
– Bob doesn’t even like Pepperoni

55	

Ø Certification authority (CA): binds public key to
particular entity, E.

Ø E (person) registers its public key with CA.
–  E provides “proof of identity” to CA.
–  CA creates certificate binding E to its public key.
–  Certificate containing E’s public key digitally signed by CA –

CA says “this is E’s public key”

Bob’s
public

key K B
+

Bob’s
identifying

information

digital
signature
(encrypt)

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA

•  When Alice wants Bob’s public key:
– Gets Bob’s certificate (Bob or elsewhere).
– Apply CA’s public key to Bob’s certificate,

get Bob’s public key

Bob’s
public

key K B
+

digital
signature
(decrypt)

CA
public

key
K CA
+

K B
+

•  Primary standard X.509 (RFC 2459)
•  Certificate contains:

–  Issuer name
– Entity name, address, domain name, etc.
– Entity’s public key
– Digital signature (signed with issuer’s private

key)
•  Public-Key Infrastructure (PKI)

– Certificates and certification authorities
– Often considered “heavy”

58	

man (or woman) in the middle attack: Trudy poses as Alice (to
Bob) and as Bob (to Alice)

I am Alice I am Alice
R

T
K (R) -

Send me your public key

T K
+

A K (R) -

Send me your public key

A K +

T K (m)
+

T
m = K (K (m)) +

T
-

Trudy gets

sends m to Alice
encrypted with

Alice’s public key

A K (m)
+

A
m = K (K (m)) +

A
-

R

difficult to detect:
v  Bob receives everything that Alice sends, and vice versa.

(e.g., so Bob, Alice can meet one week later and recall
conversation!)

v  problem is that Trudy receives all messages as well!

man (or woman) in the middle attack: Trudy poses as Alice (to
Bob) and as Bob (to Alice)

60	

Ø  Key-only attack
–  only the public key is available to the adversary

Ø  Known-message attack
–  the adversary has signatures for a set of messages known to her

but not chosen by her

Ø  Chosen-message attack
–  the adversary obtains signatures for messages chosen by her

before attempting to break the signature scheme

Ø  Adaptive chosen-message attack
–  the adversary is allowed to use the signer as an oracle
–  she may request signatures for messages which depend on

previously obtained signatures

61	

•  RSA
–  essentially identical to the RSA encryption scheme
–  signature = decryption with private key
–  typical signature length is 1024 bits

•  DSA (Digital Signature Algorithm)
–  based on the ElGamal signature scheme
–  typical signature length is 1024 bits

•  ECDSA (Elliptic Curve DSA)
–  same as DSA but works over elliptic curves
–  reduced signature length (typically 320 bits)

62	

Ø  Asymmetric-key Encryption
Ø  Message Authentication Codes and Hash

Function
Ø  Digital Signature
Ø  Session Key Establishment Protocols
Ø  Pseudo-Random Generator
Ø  Advanced Authentication Techniques

63	

Ø  Goal of session key establishment protocols
–  to setup a shared secret between two (or more) parties
–  it is desired that the secret established by a fixed pair of parties

varies on subsequent executions of the protocol (dynamicity)
–  established shared secret is used as a session key to protect

communication between the parties

Ø  Motivation for use of session keys
–  to limit available ciphertext for cryptanalysis
–  to limit exposure caused by the compromise of a session key
–  to avoid long-term storage of a large number of secret keys (keys

are created on-demand when actually required)
–  to create independence across communication sessions or

applications

64	

•  key transport protocols
– One party creates or otherwise obtains a

secret value, and securely transfers it to the
other party

•  key agreement protocols
– A shared secret is derived by the parties as a

function of information contributed by each,
such that no party can predetermine the
resulting value

65	

Ø  Entity authentication

Ø  Implicit key authentication
–  one party is assured that no other party aside from a specifically identified

second party (and possibly some trusted third parties) may gain access to
the established session key

Ø  Key confirmation
–  one party is assured that a second (possibly unidentified) party actually

possesses the session key
–  possession of a key can be demonstrated by

•  producing a one-way hash value of the key or
•  encryption of known data with the key

Ø  Explicit key authentication
–  implicit key authentication + key confirmation

Ø  Key freshness
–  one party is assured that the key is new (never used before)

66	

Ø  Reciprocity
–  guarantees are provided unilaterally
–  guarantees are provided mutually

Ø  Efficiency
–  number of message exchanges (passes) required
–  total number of bits transmitted (i.e., bandwidth used)
–  complexity of computations by each party
–  possibility of precomputations to reduce on-line computational complexity

Ø  Third party requirements
–  on-line, off-line, or no third party at all
–  degree and type of trust required in the third party

Ø  System setup
–  distribution of initial keying material

67	

Alice Bob Server

generate k

A, EKas(B, k, Ta)

EKbs(A, k, Ts)

Summary: a simple key transport protocol that uses a trusted third party
 Alice generates the session key and sends it to Bob via the trusted third party

Characteristics:
²  Implicit key authentication for Alice
²  Explicit key authentication for Bob
²  Key freshness for Bob with timestamps (flawed)
²  Unilateral entity authentication of Alice
²  On-line third party (Server) trusted for secure relaying of keys and

verification of freshness
²  In addition A is trusted for generating good keys
²  Initial long-term keys between the parties and the server are required

68	

Summary: After observing one run of the protocol, Trudy can continuously use the Server
 as an oracle until she wants to bring about re-authentication between Alice and Bob

B, EKbs(A, k, Ts)

EKas(B, k, Ts
(1))

A, EKas(B, k, Ts
(1))

EKbs(A, k, Ts
(2))

...

EKbs(A, k, Ts
(n))

Bob Trudy Server

69	

Bob Alice

A, EKb(k), Ta, SKa(B,EKb(k),Ta)
generate k

Summary: Alice generates a session key, encrypts it with Bob’s public key, then sings it,
 and sends it to Bob

Characteristics:
²  Unilateral entity authentication (of Alice)
² Mutual implicit key authentication
²  No key confirmation, key freshness with timestamp, clock synchronization
² Off-line third party for issuing public key certificates may be required
²  Initial exchange of public keys between the parties may be required
²  Alice is trusted to generate keys
²  Non-repudiation guarantee for Bob

70	

Bob Alice

select random x
compute gx mod p

select random y
compute gy mod p

gx mod p

gy mod p

compute k = (gy)x mod p compute k = (gx)y mod p

Summary: a key agreement protocol based on one-way functions; in particular, security
 of the protocol is based on the hardness of the discrete logarithm problem and
 that of the Diffie-Hellman problem

Characteristics: NO AUTHENTICATION, key freshness with randomly selected exponents,
 no party can control the key, no need for a trusted third party

Assumptions: p is a large prime, g is a generator of Zp
*, both are publicly known system

 parameters

71	

Ø  Asymmetric-key Encryption
Ø  Message Authentication Codes and Hash

Function
Ø  Digital Signature
Ø  Session Key Establishment Protocols
Ø  Pseudo-Random Generator
Ø  Advanced Authentication Techniques

72	

Ø  A random number is a number that cannot be predicted by
an observer before it is generated
–  If the number is generated within the range [0, N-1], then its

value cannot be predicted with any better probability than 1/N
–  The above is true even if the observer is given all previously

generated numbers

Ø  A cryptographic pseudo-random number generator (PRNG) is
a mechanism that processes somewhat unpredictable
inputs and generates pseudo-random outputs
–  If designed, implemented, and used properly, then even an

adversary with enormous computational power should not be
able to distinguish the PRNG output from a real random
sequence

73	

internal
state

unpredictable
input samples
(from physical
processes)

pseudo-random bits
indistinguishable from
real random bits

…
	

one-way fn

entropy
pool

re-keying

state update

74	

Ø  The adversary cannot compute the internal state of the
PRNG, even if she has observed many outputs of the PRNG

Ø  The adversary cannot compute the next output of the PRNG,
even if she has observed many previous outputs of the PRNG

Ø  If the adversary can observe or even manipulate the input
samples that are fed in the PRNG, but she does not know the
internal state of the PRNG, then the adversary cannot
compute the next output and the next internal state of the
PRNG

Ø  If the adversary has somehow learned the internal state of the
PRNG, but she cannot observe the input samples that are fed
in the PRNG, then the adversary cannot figure out the internal
state of the PRNG after the re-keying operation

75	

Ø  Asymmetric-key Encryption
Ø  Message Authentication Codes and Hash

Function
Ø  Digital Signature
Ø  Session Key Establishment Protocols
Ø  Pseudo-Random Generator
Ø  Advanced Authentication Techniques

76	

Ø  A hash chain is a sequence of hash values that are computed by iteratively
calling a one-way hash function on an initial value v0

Ø  Properties:
–  given vi, it is easy to compute any vj for j > i (vj = h(j-i)(vi))
–  but it is difficult to compute vk for k < i (one-way property of h)

Ø  Hash chains can be used for repeated authentications at the cost of a single
digital signature

–  Alice computes a hash chain and commits to it by signing vn and distributing it to
potential verifiers

–  later on, Alice can authenticate herself repeatedly (at most n times) by revealing the
elements of the hash chain in reverse order

–  when vn-i is revealed, verifiers can check if h(i)(vn-i) = vn (or h(vn-i) = vn-i+1 if they
remember the last revealed element)

–  each hash chain element can be used only once for authenticating Alice
–  verifiers are assured that only Alice could have released the next hash chain

element

Ø  Hash chains can be stored efficiently with a storage complexity that is
logarithmic in the length of the hash chain

v0	 v1	 v2	 v3	 vn-‐1	 vn	
h	 h	 h	 h	 h	 …	

77	

Ø  The limitation of hash chains is that elements can only be revealed sequentially
Ø  Merkle-trees overcome this problem by allowing for the pre-authentication of a set

of values with a single digital signature (on the root u0 of the tree) and for the
revelation of those values in any order

Ø  When revealing a value vi, Alice must also reveal all the values assigned to the
sibling vertices on the path from vi’ to the root (e.g., v3 is revealed together with
v4’, u12, u5678)

Ø  Verifiers hash the revealed values appropriately and check if the result is u0

•  h(h(u12 || h(h(v3) || v’4)) || u5678) 78	

•  A broadcast authentication mechanism based on symmetric key
cryptographic primitives

•  Main Idea: asymmetry through delayed disclosure of authentication
keys
–  Alice wants to broadcast a message m
–  Alice computes a MAC on m with a key unknown to the verifiers
–  Verifiers receive message m with the MAC, but they cannot immediately

verify authenticity
–  Later, Alice discloses the key used to compute the MAC
–  Verifiers can now verify the MAC; if it is correct, they know that the

message was sent by Alice, because at the time of reception nobody else
knew the key

•  Assumptions:
–  Loose time synchronization between the participants
–  Each party knows an upper bound on the maximum synchronization error
–  Initial secret between the parties to bootstrap the whole mechanism

79	

•  MAC keys are consecutive elements in a one-way key
chain:
–  K0 à K1 à … à Kn
–  Ki = h(Ki-1)

•  protocol operation:
–  setup: Alice sends Kn to each verifier in an authentic manner
–  time is divided into epochs
–  each message sent in epoch i is authenticated with key Kn-i
–  Kn-i is disclosed in epoch i+d, where d is a system parameter
–  Kn-i is verified by checking h(Kn-i) = Kn-i+1

•  example:

Kn-1 Kn-2 Kn-3 Kn-4

P1 P2 P3 P4 P5 P6 P7 time

Kn-1 Kn-2 Kn-3
key disclosure schedule

Kn

80	

•  Security services are implemented by using
security mechanisms

•  Many security mechanisms are based on
cryptography (e.g., encryption, digital
signature, message authentication codes, …)

•  Other important aspects are
–  physical protection
–  procedural rules
–  education

81	

 “If you think cryptography is going to
solve your problem, you don't
understand cryptography and you don't
understand your problem.”
 -- Roger Needham

82	

