
Mohammad Hossein Manshaei 
manshaei@gmail.com 

 



Appendix A 
Security and Cooperation in Wireless Networks 

secowinet.epfl.ch 
 
 

Some materials are derived from those available on the Web site of the book 
“Computer Networking”, by Kurose and Ross, PEARSON 

 
 
 
 
 
 



Ø  Asymmetric-key Encryption 
Ø  Message Authentication Codes and Hash 

Function 
Ø  Digital Signature 
Ø  Session Key Establishment Protocols 
Ø  Pseudo-Random Generator 
Ø  Advanced Authentication Techniques 
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symmetric key 
crypto 

•  requires sender, 
receiver know shared 
secret key 

•  Q: how to agree on key 
in first place (particularly 
if never “met”)? 

public key crypto 
v  radically different 

approach [Diffie-
Hellman76, RSA78] 

v  sender, receiver do not 
share secret key 

v  public encryption key  
known to all 

v  private decryption key 
known only to receiver 



plaintext 
message, m 

ciphertext encryption 
algorithm 

decryption  
algorithm 

Bob’s public  
key  

plaintext 
message 

K  (m) 
B 
+ 

K  B 
+ 

Bob’s private 
key  

K  
B 
- 

m = K  (K  (m)) B 
+ 

B 
- 
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Need K  ( ) and K  ( ) such that B B 
.  . 

Given public key K   , it should be 
impossible to compute private 
key K   

B 

B 

Requirements: 

1 

2 

RSA: Rivest, Shamir, Adelson algorithm 

+ - 

K  (K  (m))  =  m  
B B 

- + 

+ 

- 
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Ø x mod n = remainder of x when divide by n 
Ø Facts: 

² [(a mod n) + (b mod n)] mod n = (a+b) mod n 
² [(a mod n) - (b mod n)] mod n = (a-b) mod n 
² [(a mod n) * (b mod n)] mod n = (a*b) mod n 

Ø Thus 
² (a mod n)d mod n = ad mod n 

Ø Example: x=14, n=10, d=2: 
(x mod n)d mod n = 42 mod 10 = 6 
xd = 142 = 196   xd mod 10  = 6  
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Ø Message: just a bit pattern 
Ø Bit pattern can be uniquely represented by an integer 

number  
Ø  Thus, encrypting a message is equivalent to encrypting a 

number. 

Example: 
Ø m= 10010001 . This message is uniquely represented by 

the decimal number 145.  
Ø  To encrypt m, we encrypt the corresponding number, 

which gives a new number (the ciphertext). 
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1. Choose two large prime numbers p, q.  
   (e.g., 1024 bits each) 
2. Compute n = pq,  z = (p-1)(q-1) 

3. Choose e (with e<n) that has no common factors 
    with z (e, z are “relatively prime”). 
4. Choose d such that ed-1 is  exactly divisible by z. 
    (in other words: ed mod z  = 1 ). 

5. Public key is (n,e).  private key is (n,d). 

K  B 
+ K  B 

- 
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0.  Given (n,e) and (n,d) as computed above 

1. To encrypt message m (<n), compute 
c = m   mod  n e 

2. To decrypt received bit pattern, c, compute 
m = c   mod  n d 

m  =  (m   mod  n) e  mod  n d magic 
happens! 

c 
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Bob chooses p=5, q=7.  Then n=35, z=24. 
e=5  (so e, z  relatively prime). 
d=29 (so ed-1 exactly divisible by z). 
  

bit pattern m m e c = m  mod  n e 

0000l000 12 24832 17 
encrypt: 

encrypting 8-bit messages. 

c m = c  mod  n d 

17 481968572106750915091411825223071697 12 

c d 
decrypt: 
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Ø must show that cd mod n = m  
where c = me mod n 

Ø  fact: for any x and y: xy mod n = x(y mod z) mod n 
–  where n= pq and z = (p-1)(q-1) 

Ø  thus,  
 cd mod n = (me mod n)d mod n 

                  = med mod n  
                  = m(ed mod z) mod n 
                  = m1 mod n 
                  = m 
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The following property will be very useful later: 

K  (K  (m))  =  m  
B B 

- + 
K  (K  (m))   B B 

+ - 
= 

use public key 
first, followed by 

private key  

use private key 
first, followed by 

public key  

result is the 
same!  
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follows directly from modular arithmetic: 
 
(me mod n)d mod n = med mod n 
                             = mde mod n 
                             = (md mod n)e mod n  
 

K  (K  (m))  =  m  
B B 

- + 
K  (K  (m))   B B 

+ - 
= Why ? 
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•  Suppose you know Bob’s public key 
(n,e). How hard is it to determine d? 

•  Essentially need to find factors of n 
without knowing the two factors p and q  
–  fact: factoring a big number is hard 
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Ø  Factoring problem 
–  given a positive integer n, find its prime factors 

•  true complexity is unknown 
•  it is believed that it does not belong to P 

Ø  Discrete logarithm problem 
–  given a prime p, a generator g of Zp

*, and an element y in Zp
*, find the 

integer x, 0 ≤ x ≤ p-2, such that gx mod p = y 
•  true complexity is unknown 
•  it is believed that it does not belong to P 

Ø  Diffie-Hellman problem  
–  given a prime p, a generator g of Zp

*, and elements gx mod p and    gy 
mod p, find gxy mod p 

•  true complexity is unknown 
•  it is believed that it does not belong to P 
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•  Let us assume that the adversary observes a ciphertext  
c = EK(m) 

•  Let the set of possible plaintexts be M 

•  If M is small, then the adversary can try to encrypt every 
message in M with the publicly known key K until she finds 
the message m that maps into c 

•  The usual way to prevent this attack is to randomize the 
encryption 
–  some random bytes are added to the plaintext message before 

encryption through the application of the PKCS #1 formatting 
rules 

–  when the message is decrypted, the recipient can recognize and 
discard these random bytes 
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•  Exponentiation in RSA is computationally 
intensive 

•  DES is at least 100 times faster than RSA 
•  Use public key crypto to establish secure 

connection, then establish second key – 
symmetric session key – for encrypting 
data 

Session key, KS 
•  Bob and Alice use RSA to exchange a symmetric key KS 
•  Once both have KS, they use symmetric key cryptography 
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plaintext message 

symmetric-key 
cipher 

(e.g., in CBC mode) 

public key 
of the receiver 

asymmetric-key 
cipher 

digital envelop 

generate random 
symmetric key 

bulk encryption key 
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Ø  Key generation 
–  generate a large random prime p and choose generator g of the 

multiplicative group Zp
* = {1, 2, …, p-1} 

–  select a random integer a, 1 ≤ a ≤ p-2, and compute A = ga mod p 
–  the public key is (p, g, A) 
–  the private key is a 

Ø  Encryption 
–  represent the message as an integer m in [0, p-1] 
–  select a random integer r, 1 ≤ r ≤ p-2, and compute R = gr mod p 
–  compute C = m⋅Ar mod p 
–  the ciphertext is the pair (R, C) 

Ø  Decryption 
–  compute m = C⋅Rp-1-a mod p 

Ø  Proof of decryption 
 C⋅Rp-1-a ≡ m⋅Ar⋅Rp-1-a ≡ m⋅gar⋅gr(p-1-a) ≡ m⋅(gp-1)r ≡ m (mod p) 
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•  Security of the ElGamal scheme is said to 
be based on the discrete logarithm 
problem in Zp

*, although equivalence has 
not been proven yet 

•  Recovering m given p, g, A, R, and C is 
equivalent to solving the Diffie-Hellman 
problem 
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Ø  Asymmetric-key Encryption 
Ø  Message Authentication Codes and Hash 

Function 
Ø  Digital Signature 
Ø  Session Key Establishment Protocols 
Ø  Pseudo-Random Generator 
Ø  Advanced Authentication Techniques 
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Problems and Possible Solutions 
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Goal: Bob wants Alice to “prove” her identity 
to him 

Protocol ap1.0:  Alice says “I am Alice” 

Failure scenario?? 
“I am Alice” 
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in a network, 
Bob can not “see” Alice, 
so Trudy simply declares 

herself to be Alice “I am Alice” 

Goal:  Bob wants Alice to “prove” her identity 
to him 

Protocol ap1.0:  Alice says “I am Alice” 
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Protocol ap2.0: Alice says “I am Alice” in an IP packet 
containing her source IP address  

Failure scenario?? 

“I am Alice” Alice’s  
IP address 
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Trudy can create 
a packet 
“spoofing” 

Alice’s address “I am Alice” Alice’s  
IP address 

Protocol ap2.0: Alice says “I am Alice” in an IP packet 
containing her source IP address  
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Protocol ap3.0:  Alice says “I am Alice” and sends her 
 secret password to “prove” it. 

Failure scenario?? 

“I’m Alice” Alice’s  
IP addr 

Alice’s  
password 

OK Alice’s  
IP addr 
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playback attack: Trudy 
records Alice’s packet 

and later 
plays it back to Bob  

“I’m Alice” Alice’s  
IP addr 

Alice’s  
password 

OK Alice’s  
IP addr 

The image cannot be 
displayed. Your computer 
may not have enough 
memory to open the 
image, or the image may 
have been corrupted. 
Restart your computer, 
and then open the file 
again. If the red x still 
appears, you may have to 
delete the image and then 

“I’m Alice” Alice’s  
IP addr 

Alice’s  
password 

Protocol ap3.0:  Alice says “I am Alice” and sends her 
 secret password to “prove” it. 
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Protocol ap3.1:  Alice says “I am Alice” and sends her 
 encrypted secret password to “prove” it. 

Failure scenario?? 

“I’m Alice” Alice’s  
IP addr 

encrypted  
password 

OK Alice’s  
IP addr 
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record 
and 

playback 
still works! 

“I’m Alice” Alice’s  
IP addr 

encrypted 
password 

OK Alice’s  
IP addr 

The image cannot be 
displayed. Your computer 
may not have enough 
memory to open the 
image, or the image may 
have been corrupted. 
Restart your computer, 
and then open the file 
again. If the red x still 
appears, you may have to 
delete the image and then 

“I’m Alice” Alice’s  
IP addr 

encrypted 
password 

Protocol ap3.1:  Alice says “I am Alice” and sends her 
 encrypted secret password to “prove” it. 
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•  Allows communicating parties to verify that 
received messages are authentic. 
– Content of message has not been altered 
– Source of message is who/what you think it is 
– Message has not been replayed 
– Sequence of messages is maintained 

•  Let’s first talk about message digests 
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Ø  Function H( ) that takes as 
input an arbitrary length 
message and outputs a fixed-
length string: “message 
signature” 

Ø  Note that H( ) is a many-to-1 
function à collisions are 
unavoidable 

Ø  H( ) is often called a “hash 
function” 

Ø  however, finding collisions are 
difficult à the hash value of a 
message can serve as a 
compact representative image 
of the message (similar to 
fingerprints) 

Ø  Desirable properties: 
–  Easy to calculate 
–  Irreversibility: Can’t 

determine m from H(m) 
–  Collision resistance: 

Computationally difficult to 
produce m and m’ such that 
H(m) = H(m’) 

–  Seemingly random output 

large  
message 

m 

H: Hash 
Function 

H(m) 
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•  Ease of computation 
–  given an input x, the hash value h(x) of x is easy to compute 

•  Weak collision resistance (2nd preimage resistance) 
–  given an input x, it is computationally infeasible to find a second 

input x’ such that h(x’) = h(x) 

•  Strong collision resistance (collision resistance) 
–  it is computationally infeasible to find any two distinct inputs x 

and x’ such that h(x) = h(x’) 

•  One-way property (preimage resistance) 
–  given a hash value y (for which no preimage is known), it is 

computationally infeasible to find any input x s.t. h(x) = y  
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Ø  Given a set of N elements, from which we draw k elements randomly 
(with replacement). What is the probability of encountering at least one 
repeating element? 

Ø  First, compute the probability of no repetition: 
–  the first element x1 can be anything 
–  when choosing the second element x2, the probability of  x2 ≠ x1 is 1-1/N  
–  when choosing x3, the probability of  x3 ≠ x2 and x3 ≠ x1 is 1-2/N  
–  …     
–  when choosing the k-th element, the probability of  no repetition is            1-

(k-1)/N  
–  the probability of no repetition is (1 - 1/N)(1 - 2/N)…(1 – (k-1)/N) 
–  when x is small, (1-x) ≈ e-x 

–  (1 - 1/N)(1 - 2/N)…(1 – (k-1)/N) = e-1/Ne-2/N … e-(k-1)/N = e-k(k-1)/2N 

Ø  The probability of at least one repetition after k drawing is  
           1 – e-k(k-1)/2N 
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Ø  How many drawings do you need, if you want the probability of at least 
one repetition to be ε ?  

Ø  Solve the following for k: 
               ε = 1 – e-k(k-1)/2N 
    k(k-1) = 2N ln(1/1-ε) 
    k ≈ sqrt(2N ln(1/1-ε)) 

Ø  Examples: 
	
ε = ½  à k  ≈ 1.177 sqrt(N) 
	
ε = ¾  à k  ≈ 1.665 sqrt(N) 
	
ε = 0.9  à k  ≈ 2.146 sqrt(N) 

Ø  Origin of the name “Birthday Paradox”: 
–  elements are dates in a year (N = 365) 
–  among 1.177 sqrt(365) ≈ 23 randomly selected people, there will be at least 

two that have the same birthday with probability ½ 
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•  The Birthday Paradox have a profound 
impact on the design of hash functions (and 
other cryptographic algorithms and 
protocols)! 
–  Let n be the output size of a hash function 
– Among ~sqrt(2n) = 2n/2 randomly chosen 

messages, with high probability, there will be 
a collision pair 

–  It is easier to find collisions than to find preimages 
or 2nd preimages for a given hash value 

à in order to resist birthday attacks, 2n/2 should be 
sufficiently large (e.g., n = 160 bits) 
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Ø  Input is divided into fixed length blocks x1, x2, …, xL 

Ø  Last block is padded if necessary 
–  Merkle-Damgard strengthening: padding contains the length of the message 

Ø  Each input block is processed according to the following scheme 

Ø  f is called the compression function 
–  can be based on a block cipher, or 
–  can be a dedicated compression function 

x1 

CV0 

(b) 

(n) (n) 

CV1 

f 

x2 

(b) 

(n) 

CV2 

f 

x3 

(b) 

(n) 

CV3 

f 

xL 

(b) 

(n) h(x) = CVL 
f 

CVL-1 

…	  

38	  



•  MD5 hash function widely used (RFC 1321)  
–  computes 128-bit message digest in 4-step process.  

•  SHA-1 is also used. 
–  US standard [NIST, FIPS PUB 180-1] 
–  160-bit message digest 
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m
es

sa
ge

 

H( ) 

s	  

	  
	  

m
es

sa
ge

 
	  
	  

m
es

sa
ge

 

	  
	  

s	  

H( ) 	  
	  

	  
	  

compare 

s = shared secret 

•  Authenticates sender 
•  Verifies message integrity 
•  No encryption ! 
•  Also called “keyed hash” 
•  Notation: MDm = H(s||m) ; send m||MDm  
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•  Ease of computation 
–  given an input x and a secret key k, it is easy to compute 

MACk(x) 

•  Key non-recovery 
–  it is computationally infeasible to recover the secret key k, 

given one or more text-MAC pairs (xi, MACk(xi)) for that k 

•  Computation resistance 
–  given zero or more text-MAC pairs (xi, MACk(xi)), it is 

computationally infeasible to find a text-MAC pair (x, 
MACk(x)) for any new input x ≠ xi   

–  computation resistance implies key non-recovery but the 
reverse is not true in general 
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Ø  Popular MAC standard 
Ø  Addresses  some subtle security flaws 
Ø  How it works: 

1.  Concatenates secret to front of message.  
2.  Hashes concatenated message 
3.  Concatenates the secret to front of digest 
4.  Hashes the combination again. 
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k+ ⊕ ipad 

CV0 
f 

x1 

f 

xL|padding1 

f 

k+ ⊕ opad 

CV0 
f 

M|padding2 

f 

M 
CV1

inner 

CV1
outer 

HMACk(x) 

…	  

hash	  fn	  

hash	  fn	  

HMACk(X)	  =	  H(	  k’’|H(	  k’|X	  ))	  
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Ø  CBC MAC is secure for messages of a fixed 
number of blocks 

Ø  (adaptive chosen-text existential) forgery is 
possible if variable length messages are 
allowed 

à   it is recommended to involve the length of 
 the message in the CBC MAC computation 

E 

x1 

k 

+ 

E 

x2 

k 

+ 

E 

x3 

k 

+ 

E 

xN 

cN 

k 

+ 0 cN-1 

… 

c1 c2 c3 
E-1 

E 

k’ 

k 

MAC 

optional 
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•  Want to be sure of the originator of the 
message – end-point authentication. 

•  Assuming Alice and Bob have a shared 
secret, will MAC provide end-point 
authentication. 
– We do know that Alice created the message.  
– But did she send it? 
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The image cannot be 
displayed. Your computer 
may not have enough 
memory to open the image, 
or the image may have been 
corrupted. Restart your 
computer, and then open 
the file again. If the red x 
still appears, you may have 
to delete the image and 
then insert it again.

MAC Transfer $1M 
from Bill to Trudy 

MAC Transfer $1M from 
Bill to Trudy 

Playback attack 
MAC = 
f(msg,s) 
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“I am Alice” 

R 

MAC Transfer $1M  
from Bill to Susan 

MAC = 
f(msg,s,R) 

Defending against playback 
attack: nonce 
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Goal: avoid playback attack 

Failures, drawbacks? 

nonce: number (R) used only once-in-a-lifetime 
ap4.0: to prove Alice “live”, Bob sends Alice nonce, R.   
Alice must return R, encrypted with shared secret key 

“I am Alice” 

R 

K    (R) A-B 
Alice is live, and 
only Alice knows 
key to encrypt 

nonce, so it must 
be Alice! 
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ap4.0 requires shared symmetric key  
•  can we authenticate using public key 

techniques? 
ap5.0: use nonce, public key cryptography 

“I am Alice” 

R 
Bob computes 

 
K   (R) A 

- 

“send me your public key” 

K   A 
+ 

(K  (R)) = R A 
- 

K    A 
+ 

and knows only Alice 
could have the private 
key, that encrypted R 

such that 
(K  (R)) = R A 

- 
K   A 

+ 
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Ø  Asymmetric-key Encryption 
Ø  Message Authentication Codes and Hash 

Function 
Ø  Digital Signature 
Ø  Session Key Establishment Protocols 
Ø  Pseudo-Random Generator 
Ø  Advanced Authentication Techniques 
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Cryptographic technique analogous to hand-
written signatures. 

Ø Sender (Bob) digitally signs document, establishing 
he is document owner/creator.  

Ø Goal is similar to that of a MAC, except now use 
public-key cryptography 

Ø Verifiable, nonforgeable: recipient (Alice) can prove 
to someone that Bob, and no one else (including 
Alice), must have signed document  
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Simple digital signature for message m: 
Ø Bob signs m by encrypting with his private key KB, 

creating “signed” message, KB(m) - 
- 

Dear Alice 
Oh, how I have missed 
you. I think of you all the 
time! …(blah blah blah) 

Bob 

Bob’s message, m 

Public key 
encryption 
algorithm 

Bob’s private 
key  K  B 

- 

Bob’s message, 
m, signed 

(encrypted) with 
his private key 

K  B 
- (m) 
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large  
message 

m 
H: Hash 
function H(m) 

digital 
signature 
(encrypt) 

Bob’s  
private 

key  K  B 
- 

+ 

Bob sends digitally signed 
message: 

Alice verifies signature and 
integrity of digitally signed 
message: 

KB(H(m)) - 

encrypted  
msg digest 

KB(H(m)) - 

encrypted  
msg digest 

large  
message 

m 

H: Hash 
function 

H(m) 

digital 
signature 
(decrypt) 

H(m) 

Bob’s  
public 

key  K  B 
+ 

equal 
 ? 

Digital Signature = Signed Message Digest 



•  Suppose Alice receives msg m, digital signature KB(m) 
•  Alice verifies m  signed by Bob by applying Bob’s public 

key KB to KB(m) then checks KB(KB(m) ) = m. 
•  If KB(KB(m) ) = m, whoever signed m must have used 

Bob’s private key. 

+ + 

- 

- 

- - 

+ 

Alice thus verifies that: 
➼ Bob signed m. 
➼ No one else signed m. 
➼ Bob signed m and not m’. 

Non-repudiation: 
ü  Alice can take m, and signature KB(m) to court and 

prove that Bob signed m.  

- 
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•  Motivation: Trudy plays pizza prank on Bob 
– Trudy creates e-mail order:  

Dear Pizza Store, Please deliver to me four 
pepperoni pizzas. Thank you, Bob 

– Trudy signs order with her private key 
– Trudy sends order to Pizza Store 
– Trudy sends to Pizza Store her public key, but 

says it’s Bob’s public key. 
– Pizza Store verifies signature; then delivers four 

pizzas to Bob. 
– Bob doesn’t even like Pepperoni 
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Ø Certification authority (CA): binds public key to 
particular entity, E. 

Ø E (person) registers its public key with CA. 
–  E provides “proof of identity” to CA.  
–  CA creates certificate binding E to its public key. 
–  Certificate containing E’s public key digitally signed by CA – 

CA says “this is E’s public key” 

Bob’s  
public 

key  K  B 
+ 

Bob’s  
identifying 

information  

digital 
signature 
(encrypt) 

CA  
private 

key  K  CA 
- 

K  B 
+ 

certificate for 
Bob’s public key, 

signed by CA 



•  When Alice wants Bob’s public key: 
– Gets Bob’s certificate (Bob or elsewhere). 
– Apply CA’s public key to Bob’s certificate, 

get Bob’s public key 

Bob’s  
public 

key  K  B 
+ 

digital 
signature 
(decrypt) 

CA  
public 

key  
K  CA 
+ 

K  B 
+ 



•  Primary standard X.509 (RFC 2459) 
•  Certificate contains: 

–  Issuer name 
– Entity name, address, domain name, etc. 
– Entity’s public key 
– Digital signature (signed with issuer’s private 

key) 
•  Public-Key Infrastructure (PKI) 

– Certificates and certification authorities 
– Often considered “heavy” 
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man (or woman) in the middle attack: Trudy poses as Alice (to 
Bob) and as Bob (to Alice) 

I am Alice I am Alice 
R 

T 
K   (R) - 

Send me your public key 

T K    
+ 

A K   (R) - 

Send me your public key 

A K    + 

T K   (m) 
+ 

T 
m = K  (K   (m)) + 

T 
- 

Trudy gets 

sends m to Alice 
encrypted with 

Alice’s public key 

A K  (m) 
+ 

A 
m = K  (K   (m)) + 

A 
- 

R 



difficult to detect: 
v  Bob receives everything that Alice sends, and vice versa. 

(e.g., so Bob, Alice can meet one week later and recall 
conversation!) 

v  problem is that Trudy receives all messages as well!  

man (or woman) in the middle attack: Trudy poses as Alice (to 
Bob) and as Bob (to Alice) 
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Ø  Key-only attack 
–  only the public key is available to the adversary 

Ø  Known-message attack  
–  the adversary has signatures for a set of messages known to her 

but not chosen by her 

Ø  Chosen-message attack 
–  the adversary obtains signatures for messages chosen by her 

before attempting to break the signature scheme 

Ø  Adaptive chosen-message attack 
–  the adversary is allowed to use the signer as an oracle 
–  she may request signatures for messages which depend on 

previously obtained signatures 
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•  RSA 
–  essentially identical to the RSA encryption scheme 
–  signature = decryption with private key 
–  typical signature length is 1024 bits 

•  DSA (Digital Signature Algorithm) 
–  based on the ElGamal signature scheme 
–  typical signature length is 1024 bits 

•  ECDSA (Elliptic Curve DSA) 
–  same as DSA but works over elliptic curves 
–  reduced signature length (typically 320 bits) 
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Ø  Asymmetric-key Encryption 
Ø  Message Authentication Codes and Hash 

Function 
Ø  Digital Signature 
Ø  Session Key Establishment Protocols 
Ø  Pseudo-Random Generator 
Ø  Advanced Authentication Techniques 
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Ø  Goal of session key establishment protocols 
–  to setup a shared secret between two (or more) parties 
–  it is desired that the secret established by a fixed pair of parties 

varies on subsequent executions of the protocol (dynamicity) 
–  established shared secret is used as a session key to protect 

communication between the parties 

Ø  Motivation for use of session keys 
–  to limit available ciphertext for cryptanalysis 
–  to limit exposure caused by the compromise of a session key 
–  to avoid long-term storage of a large number of secret keys (keys 

are created on-demand when actually required) 
–  to create independence across communication sessions or 

applications 
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•  key transport protocols 
– One party creates or otherwise obtains a 

secret value, and securely transfers it to the 
other party  

•  key agreement protocols 
– A shared secret is derived by the parties as a 

function of information contributed by each, 
such that no party can predetermine the 
resulting value 
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Ø  Entity authentication 

Ø  Implicit key authentication 
–  one party is assured that no other party aside from a specifically identified 

second party (and possibly some trusted third parties) may gain access to 
the established session key 

Ø  Key confirmation 
–  one party is assured that a second (possibly unidentified) party actually 

possesses the session key 
–  possession of a key can be demonstrated by  

•  producing a one-way hash value of the key or  
•  encryption of known data with the key  

Ø  Explicit key authentication  
–  implicit key authentication + key confirmation 

Ø  Key freshness 
–  one party is assured that the key is new (never used before) 
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Ø  Reciprocity 
–  guarantees are provided unilaterally 
–  guarantees are provided mutually 

Ø  Efficiency 
–  number of message exchanges (passes) required 
–  total number of bits transmitted (i.e., bandwidth used) 
–  complexity of computations by each party 
–  possibility of precomputations to reduce on-line computational complexity 

Ø  Third party requirements 
–  on-line, off-line, or no third party at all 
–  degree and type of trust required in the third party 

Ø  System setup 
–  distribution of initial keying material 
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Alice Bob Server 

generate k 

A, EKas( B, k, Ta ) 

EKbs( A, k, Ts ) 

Summary: a simple key transport protocol that uses a trusted third party 
 Alice generates the session key and sends it to Bob via the trusted third  party 

Characteristics:   
²  Implicit key authentication for Alice 
²  Explicit key authentication for Bob 
²  Key freshness for Bob with timestamps (flawed) 
²  Unilateral entity authentication of Alice  
²  On-line third party (Server) trusted for secure relaying of keys and 

verification of freshness 
²  In addition A is trusted for generating good keys 
²  Initial long-term keys between the parties and the server are required  
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Summary:  After observing one run of the protocol, Trudy can continuously use the Server  
 as an oracle until she wants to bring about re-authentication between Alice and Bob 

B, EKbs( A, k, Ts ) 

EKas( B, k, Ts
(1)) 

A, EKas( B, k, Ts
(1)) 

EKbs( A, k, Ts
(2)) 

...
 

EKbs( A, k, Ts
(n)) 

Bob Trudy Server 
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Bob Alice 

A, EKb(k), Ta, SKa(B,EKb(k),Ta) 
generate k 

Summary: Alice generates a session key, encrypts it with Bob’s public key, then sings it,  
 and sends it to Bob 

Characteristics:  
²  Unilateral entity authentication (of Alice) 
² Mutual implicit key authentication 
²  No key confirmation, key freshness with timestamp, clock synchronization 
² Off-line third party for issuing public key certificates may be required 
²  Initial exchange of public keys between the parties may be required 
²  Alice is trusted to generate keys 
²  Non-repudiation guarantee for Bob 
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Bob Alice 

select random x 
compute gx mod p 

select random y 
compute gy mod p 

gx mod p 

gy mod p 

compute k = (gy)x mod p compute k = (gx)y mod p 

Summary: a key agreement protocol based on one-way functions; in particular, security 
 of the protocol is based on the hardness of the discrete logarithm problem and  
 that of the Diffie-Hellman problem 

Characteristics: NO AUTHENTICATION, key freshness with randomly selected exponents,  
           no party can control the key, no need for a trusted third party 

Assumptions: p is a large prime, g is a generator of  Zp
*, both are publicly known system  

      parameters 
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Ø  Asymmetric-key Encryption 
Ø  Message Authentication Codes and Hash 

Function 
Ø  Digital Signature 
Ø  Session Key Establishment Protocols 
Ø  Pseudo-Random Generator 
Ø  Advanced Authentication Techniques 
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Ø  A random number is a number that cannot be predicted by 
an observer before it is generated 
–  If the number is generated within the range [0, N-1], then its 

value cannot be predicted with any better probability than 1/N 
–  The above is true even if the observer is given all previously 

generated numbers 

Ø  A cryptographic pseudo-random number generator (PRNG) is 
a mechanism that processes somewhat unpredictable 
inputs and generates pseudo-random outputs 
–  If designed, implemented, and used properly, then even an 

adversary with enormous computational power should not be 
able to distinguish the PRNG output from a real random 
sequence 
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internal 
state 

unpredictable 
input samples 
(from physical 
processes) 

pseudo-random bits 
indistinguishable from 
real random bits 

…
	  

one-way fn 

entropy 
pool 

re-keying 

state update 
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Ø  The adversary cannot compute the internal state of the 
PRNG, even if she has observed many outputs of the PRNG 

Ø  The adversary cannot compute the next output of the PRNG, 
even if she has observed many previous outputs of the PRNG 

Ø  If the adversary can observe or even manipulate the input 
samples that are fed in the PRNG, but she does not know the 
internal state of the PRNG, then the adversary cannot 
compute the next output and the next internal state of the 
PRNG 

Ø  If the adversary has somehow learned the internal state of the 
PRNG, but she cannot observe the input samples that are fed 
in the PRNG, then the adversary cannot figure out the internal 
state of the PRNG after the re-keying operation 
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Ø  Asymmetric-key Encryption 
Ø  Message Authentication Codes and Hash 

Function 
Ø  Digital Signature 
Ø  Session Key Establishment Protocols 
Ø  Pseudo-Random Generator 
Ø  Advanced Authentication Techniques 
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Ø  A hash chain is a sequence of hash values that are computed by iteratively 
calling a one-way hash function on an initial value v0 

Ø  Properties: 
–  given vi, it is easy to compute any vj for j > i  (vj = h(j-i)(vi)) 
–  but it is difficult to compute vk for k < i (one-way property of h) 

Ø  Hash chains can be used for repeated authentications at the cost of a single 
digital signature 

–  Alice computes a hash chain and commits to it by signing vn and distributing it to 
potential verifiers 

–  later on, Alice can authenticate herself repeatedly (at most n times) by revealing the 
elements of the hash chain in reverse order 

–  when vn-i is revealed, verifiers can check if h(i)(vn-i) = vn  (or h(vn-i) = vn-i+1 if they 
remember the last revealed element) 

–  each hash chain element can be used only once for authenticating Alice  
–  verifiers are assured that only Alice could have released the next hash chain 

element 

Ø  Hash chains can be stored efficiently with a storage complexity that is 
logarithmic in the length of the hash chain 

v0	   v1	   v2	   v3	   vn-‐1	   vn	  
h	   h	   h	   h	   h	  …	  
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Ø  The limitation of hash chains is that elements can only be revealed sequentially 
Ø  Merkle-trees overcome this problem by allowing for the pre-authentication of a set 

of values with a single digital signature (on the root u0 of the tree) and for the 
revelation of those values in any order 

Ø  When revealing a value vi, Alice must also reveal all the values assigned to the 
sibling vertices on the path from vi’ to the root (e.g., v3 is revealed together with 
v4’, u12, u5678) 

Ø  Verifiers hash the revealed values appropriately and check if the result is u0 

•  h(h(u12 || h(h(v3) || v’4)) || u5678) 78	  



•  A broadcast authentication mechanism based on symmetric key 
cryptographic primitives 

•  Main Idea: asymmetry through delayed disclosure of authentication 
keys 
–  Alice wants to broadcast a message m 
–  Alice computes a MAC on m with a key unknown to the verifiers 
–  Verifiers receive message m with the MAC, but they cannot immediately 

verify authenticity 
–  Later, Alice discloses the key used to compute the MAC 
–  Verifiers can now verify the MAC; if it is correct, they know that the 

message was sent by Alice, because at the time of reception nobody else 
knew the key 

•  Assumptions: 
–  Loose time synchronization between the participants 
–  Each party knows an upper bound on the maximum synchronization error 
–  Initial secret between the parties to bootstrap the whole mechanism 
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•  MAC keys are consecutive elements in a one-way key 
chain: 
–  K0 à K1 à … à Kn 
–  Ki = h(Ki-1) 

•  protocol operation: 
–  setup: Alice sends Kn to each verifier in an authentic manner 
–  time is divided into epochs 
–  each message sent in epoch i is authenticated with key Kn-i 
–  Kn-i is disclosed in epoch i+d, where d is a system parameter 
–  Kn-i is verified by checking h(Kn-i) = Kn-i+1 

•  example: 

Kn-1 Kn-2 Kn-3 Kn-4 

P1 P2 P3 P4 P5 P6 P7 time 

Kn-1 Kn-2 Kn-3 
key disclosure schedule 

Kn 
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•  Security services are implemented by using 
security mechanisms 

•  Many security mechanisms are based on 
cryptography (e.g., encryption, digital 
signature, message authentication codes, …) 

•  Other important aspects are 
–  physical protection 
–  procedural rules 
–  education 
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     “If you think cryptography is going to 
solve your problem, you don't 
understand cryptography and you don't 
understand your problem.” 
      -- Roger Needham 
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