

Security and Privacy in Wireless Networks

Mohammad Hossein Manshaei manshaei@gmail.com

Introduction to Cryptographic Algorithms and Protocols

Appendix A Security and Cooperation in Wireless Networks

Contents

- Introduction to Cryptography
- Encryption and Adversary Model
- Symmetric Key Encryption
- Block Cipher
- Block Cipher Model of Operation

Introduction

- Security is about how to prevent attacks, or -- if prevention is not possible -- how to detect attacks and recover from them
- An attack is a *deliberate attempt* to compromise a system; it usually exploits weaknesses in the system's design, implementation, operation, or management

Attacks can be

- Passive
 - Attempts to learn or make use of information from the system but does not affect system resources
 - Examples: eavesdropping message contents, traffic analysis
 - Difficult to detect, should be prevented
- Active
 - · Attempts to alter system resources or affect their operation
 - Examples: masquerade (spoofing), replay, modification (substitution, insertion, destruction), denial of service
 - Difficult to prevent, should be detected

Friends and Enemies: Alice, Bob, Trudy

- Well-known in network security world
- Bob, Alice (lovers!) want to communicate "securely"
- Trudy (intruder) may intercept, delete, add messages

Who might Bob, Alice be?

- ... well, real-life Bobs and Alices!
- Web browser/server for electronic transactions (e.g., on-line purchases)
- On-line banking client/server
- Wireless Eavesdropper
- DNS servers
- Routers exchanging routing table updates
- Other examples?

There are bad guys (and girls) out there!

- Q: What can a "bad guy" do?
- <u>A:</u> A lot!
 - eavesdrop: intercept messages
 - actively *insert* messages into connection
 - *impersonation:* can fake (spoof) source address in packet (or any field in packet)
 - hijacking: "take over" ongoing connection by removing sender or receiver, inserting himself in place
 - *denial of service*: prevent service from being used by others (e.g., by overloading resources)

Main Security Services

Authentication

- aims to detect masquerade
- provides assurance that a communicating entity is the one that it claims to be

Access control

- aims to prevent unauthorized access to resources

Confidentiality

- aims to protect data from unauthorized disclosure
- usually based on encryption

Integrity

- aims to detect modification and replay
- provides assurance that data received are exactly as sent by the sender

Non-repudiation

- Provides protection against denial by one entity involved in a communication of having participated in all or part of the communication
- Two basic types: non-repudiation of origin and non-repudiation of delivery

Some Security Mechanisms

- Encryption
 - symmetric key, asymmetric (public) key
- Digital signature
- Access control schemes
 - access control lists, capabilities, security labels, ...
- Data integrity mechanisms
 - message authentication codes, sequence numbering, time stamping, cryptographic chaining
- Authentication protocols
 - passwords, cryptographic challenge-response protocols, biometrics
- Traffic padding, route control, ...

Contents

- Introduction to Cryptography
- Encryption and Adversary Model
- Symmetric Key Encryption
- Block Cipher
- Block Cipher Model of Operation

Classical Model of Encryption

m plaintext message $E_{K}(m)$ ciphertext, encrypted with key K_{A} $m = D_{K'}(E_{K}(m))$

Classical Model of Encryption

- Goal of the adversary:
 - to systematically recover plaintexts from ciphertexts
 - to deduce the (decryption) key
- Kerckhoff's principle:
 - we must assume that the adversary knows all details of E and D
 - security of the system should be based on the protection of the decryption key

Adversary models

- Ciphertext-only attack
 - The adversary can only observe ciphertexts produced by the same encryption key
 - Two approaches: (1) **brute for**ce: search through all keys

(2) statistical analysis

- Known-plaintext attack
 - the adversary can obtain corresponding plaintext-ciphertext pairs produced with the same encryption key
- (Adaptive) Chosen-plaintext attack
 - The adversary can choose plaintexts and obtain the corresponding ciphertexts
- (Adaptive) Chosen-ciphertext attack
 - The adversary can choose ciphertexts and obtain the corresponding plaintexts
- Related-key attack
 - the adversary can obtain ciphertexts, or plaintext-ciphertext pairs that are produced with different encryption keys that are related in a known way to a specific encryption key

Security of Encryption Schemes

- An encryption scheme is secure in a given adversary model if it is computationally infeasible for the adversary to determine the target decryption key under the assumptions of the given model
- For many encryption schemes used in practice, no proof of security exists
 - ✓ these schemes are used, nevertheless, because they are efficient and they resist all known attacks
- Some encryption schemes are provably secure, however these schemes are often inefficient

Basic Classification Encryption Schemes

- Symmetric-key encryption
 - It is easy to compute K' from K (and vice versa)
 - Usually K' = K
 - Two main types:
 - Stream ciphers operate on individual characters of the plaintext
 - Block ciphers process the plaintext in larger blocks of characters
- Asymmetric-key encryption
 - it is hard (computationally infeasible) to compute K' from K
 - K can be made public (\rightarrow public-key cryptography)

Contents

- Introduction to Cryptography
- Encryption and Adversary Model
- Symmetric Key Encryption
- Block Cipher
- Block Cipher Model of Operation

Symmetric Key Cryptography

symmetric key crypto: Bob and Alice share same (symmetric) key: K

• e.g., key is knowing substitution pattern in mono alphabetic substitution cipher

<u>Q</u>: how do Bob and Alice agree on key value?

Simple Encryption Scheme

substitution cipher: substituting one thing for another

- monoalphabetic cipher: substitute one letter for another

plaintext:	abcdefghijklmnopqrstuvwxy		
ciphertext:	<pre>mnbvcxzasdfghjklpoiuytrewq</pre>		

- e.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc
- Encryption key: mapping from set of 26 letters to set of 26 letters 26!: # of possible keys. (Note: There exists statistical analysis)

A More Sophisticated Encryption Approach

- Main Idea: Same letter appearing in different places will be encoded differently
- n substitution ciphers, M₁,M₂,...,M_n
- Cycling pattern:

 e.g., n=4: M₁,M₃,M₄,M₃,M₂; M₁,M₃,M₄,M₃,M₂; ...
- For each new plaintext symbol, use subsequent substitution pattern in cyclic pattern

- dog: d from M₁, o from M₃, g from M₄

- Encryption key: n substitution ciphers, and cyclic pattern
 - key need not be just n-bit pattern

Contents

- Introduction to Cryptography
- Encryption and Adversary Model
- Symmetric Key Encryption
- Block Cipher
- Block Cipher Model of Operation

Block Ciphers

An *n* bit block cipher is a function E: $\{0, 1\}^n \ge \{0, 1\}^k \rightarrow \{0, 1\}^n$, such that for each $K \in \{0,1\}^k$, $E(x, K) = E_K(x)$ is an invertible mapping from $\{0,1\}^n$ to $\{0,1\}^n$

Block Ciphers: Simple Example

	Input	Output
Message to be encrypted is processed in	000	110
blocks of k bits (e.g., 3-bit blocks).	001	111
	010	101
1-to-1 mapping is used to map k-bit block of plaintext to k-bit block of ciphertext		100
		011
	101	010
What is the ciphertext for 010110001111 ?	110	000
\Rightarrow 101000111001	111	001

Number of possible Keys = Number of possible mapping 8!= 40320

Brute-Force Attack ->

It tries to decrypt ciphertext with all mapping (keys)

Exhaustive Key Search Attack

- Given a small number of plaintext-ciphertext pairs encrypted under a key K, K can be recovered by exhaustive key search with 2^{k-1} processing complexity (expected number of operations)
 - input: (X, Y), (X', Y'), ...
 - progress through the entire key space, and for each candidate key K', do the following:
 - decrypt Y with K'
 - if the result is not X, then throw away K'
 - if the result is X, then check the other pairs (X', Y'), \ldots
 - if K' does not work for at least one pair, then throw away K' and take another key
 - if K' worked for all pairs (X, Y), (X', Y'), …, then output K' as the target key
 - On average, the target key is found after searching half of the key space
- If the plaintexts are known to contain redundancy, then ciphertext-only exhaustive key search is possible with a relatively small number of ciphertexts
- \rightarrow in practice, key size should be at least 128 bits

Algebraic Attacks

- Having a large key size is <u>only a necessary condition</u> for the security of a block cipher
 - A block cipher can be broken due to the weaknesses in its internal (algebraic) structure, even if it uses large keys

• Example:

- Naïve exhaustive key search against DES: 255
- Attack using the complementation property of DES: 2^{54} Y = DES_K(X) implies Y* = DES_{K*}(X*), where X* denotes the bitwise complement of X
- Differential cryptanalysis of DES: 247
- Linear cryptanalysis of DES: 243

Block Ciphers: Key and Implementation

- How many possible mappings are there for k=3?
 - How many 3-bit inputs?
 - How many permutations of the 3-bit inputs?
 - Answer: 40,320 ; not very many! (Number of Key)
- In general, 2^k! mappings; huge for k=64
- Problem:
 - Table approach requires table with 2⁶⁴ entries, each entry with 64 bits
- Table too big: instead use function that simulates a randomly permuted table

Prototype Function

Why rounds in prototpe?

- If only a single round, then one bit of input affects at most 8 bits of output.
- In 2nd round, the 8 affected bits get scattered and inputted into multiple substitution boxes.
- How many rounds?
 - How many times do you need to shuffle cards
 - Becomes less efficient as n increases

Encrypting a Large Message

- ♦ Why not just break message in 64-bit blocks, encrypt each block separately?
 - If same block of plaintext appears twice, will give same ciphertext.
- \diamond How about:
 - Generate random 64-bit number r(i) for each plaintext block m(i)
 - Calculate $c(i) = E_{K}(m(i) \oplus r(i))$
 - Transmit c(i), r(i), i=1,2,...
 - At receiver: $m(i) = D_{K}(c(i)) \oplus r(i)$
 - Problem: inefficient, need to send c(i) and r(i)

Cipher Block Chaining (CBC)

 $\diamond \text{CBC}$ generates its own random numbers

- Have encryption of current block depend on result of previous block
- $c(i) = E_{K}(m(i) \oplus c(i-1))$
- $m(i) = D_K(c(i)) \oplus c(i-1)$
- \diamond How do we encrypt first block?
 - Initialization vector (IV): random block = c(0)
 - IV does not have to be secret
- ♦ Change IV for each message (or session)
 - Guarantees that even if the same message is sent repeatedly, the ciphertext will be completely different each time

Cipher Block Chaining

 Cipher block: if input block repeated, will produce same cipher text:

- Cipher block chaining: XOR ith input block, m(i), with previous block of cipher text, c(i-1)
 - c(0) transmitted to receiver in clear

Symmetric Key Crypto: DES

DES: Data Encryption Standard

- US encryption standard [NIST 1993]
- 56-bit symmetric key, 64-bit plaintext input
- Block cipher with cipher block chaining
- How secure is DES?
 - DES Challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day
 - No known good analytic attack
- Making DES more secure:
 - 3DES: encrypt 3 times with 3 different keys (actually encrypt, decrypt, encrypt)

DES (Data Encryption Standard)

- input size: 64
- output size: 64
- key size: 56
- 16 rounds
- Feistel structure

- Si Substitution box (S-box)
- P Permutation box (P-box)

DES key scheduler

each key bit is used in around 14 out of 16 rounds

Block Cipher Design Criteria

Completeness

 Each bit of the output block should depend on each bit of the input block and on each bit of the key

Avalanche Effect

- Changing one bit in the input block should change approximately half of the bits in the output block
- Similarly, changing one key bit should result in the change of approximately half of the bits in the output block

Statistical Independence

Input and output should appear to be statistically independent

How to satisfy the design criteria?

- Complex encryption function can be built by composing several simple operations which offer complementary – but individually insufficient – protection
- Simple operations:
 - elementary arithmetic operations
 - logical operations (e.g., XOR)
 - modular multiplication
 - transpositions
 - substitutions

— ...

 Combine two or more transformations in a manner that the resulting cipher is more secure than the individual components

AES: Advanced Encryption Standard

- New (Nov. 2001) symmetric-key NIST standard, replacing DES
- processes data in 128 bit blocks
- 128, 192, or 256 bit keys
- brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for AES

Contents

- Introduction to Cryptography
- Encryption and Adversary Model
- Symmetric Key Encryption
- Block Cipher
- Block Cipher Model of Operation

Block Cipher Modes of Operation

- ECB Electronic Codebook
 - used to encipher a single plaintext block (e.g., a DES key)
- CBC Cipher Block Chaining
 - repeated use of the encryption algorithm to encipher a message consisting of many blocks
- CFB Cipher Feedback
 - used to encipher a stream of characters, dealing with each character as it comes
- OFB Output Feedback
 - another method of **stream** encryption, used on noisy channels
- CTR Counter
 - simplified OFB with certain advantages

ECB (Electronic Codebook) Mode

...

PN

Properties of the ECB mode

- Identical plaintext blocks result in identical ciphertext blocks (under the same key, of course)
 - ✓ messages to be encrypted often have very regular formats
 - ✓ repeating fragments, special headers, string of 0s, etc. are quite common

♦ Blocks are encrypted independently of other blocks

- reordering ciphertext blocks result in correspondingly reordered plaintext blocks
- ciphertext blocks can be cut from one message and pasted in another, possibly without detection
- Error propagation: one bit error in a ciphertext block affects only the corresponding plaintext block (results in garbage)
- Overall: not recommended for messages longer than one block, or if keys are reused for more than one block

Block Cipher Modes of Operation

- ECB Electronic Codebook
 - used to encipher a single plaintext block (e.g., a DES key)
- CBC Cipher Block Chaining
 - repeated use of the encryption algorithm to encipher a message consisting of many blocks
- CFB Cipher Feedback
 - used to encipher a stream of characters, dealing with each character as it comes
- OFB Output Feedback
 - another method of **stream** encryption, used on noisy channels
- CTR Counter
 - simplified OFB with certain advantages

CBC (Cipher Block Chaining) mode

Properties of the CBC Mode

- Encrypting the same plaintexts under the same key, but different IVs result in different ciphertexts
- \diamond Ciphertext block C_i depends on P_i and all preceding plaintext blocks
 - ✓ Rearranging ciphertext blocks affects decryption
 - ✓ However, dependency on the preceding plaintext blocks is only via the previous ciphertext block C_{i-1}
 - Proper decryption of a correct ciphertext block needs a correct preceding ciphertext block only

♦ Error propagation:

✓ One bit error in a ciphertext block C_j has an effect on the j-th and (j+1)-st plaintext block

✓ P'_i is complete garbage and P_{j+1} has bit errors where C_j had

 \checkmark an attacker may cause predictable bit changes in the (j+1)-st plaintext block

♦ Error recovery:

- ✓ recovers from bit errors (self-synchronizing)
- ✓ cannot, however, recover from frame errors ("lost" bits)

Integrity of the IV in the CBC mode

- The IV need not be secret, but its integrity should be protected
 - malicious modification of the IV allows an attacker to make predictable changes to the first plaintext block recovered
- One solution is to send the IV in an encrypted form at the beginning of the CBC encrypted message

Padding

- The length of the message may not be a multiple of the block size of the cipher
- One can add some extra bytes to the short end block until it reaches the correct size this is called padding
- Usually the last byte indicates the number of padding bytes added – this allows the receiver to remove the padding

Block Cipher Modes of Operation

- ECB Electronic Codebook
 - used to encipher a single plaintext block (e.g., a DES key)
- CBC Cipher Block Chaining
 - repeated use of the encryption algorithm to encipher a message consisting of many blocks
- CFB Cipher Feedback
 - used to encipher a stream of characters, dealing with each character as it comes
- OFB Output Feedback
 - another method of **stream** encryption, used on noisy channels
- CTR Counter
 - simplified OFB with certain advantages

From Block Cipher to Stream Cipher

- ♦ The block cipher is used to produce a key stream, which is then XORed to the plaintext characters.
- ♦ The key stream is generated by iteratively encrypting and updating some internal state.
- ♦ The various modes differ only in the way in which this internal state is updated.

CFB (Cipher Feedback) mode

Encrypt

Decrypt

Properties of the CFB mode

- Encrypting the same plaintexts under the same key, but different IVs result in different ciphertexts
- \diamond The IV can be sent in clear
- \diamond Ciphertext block C_i **depends** on P_i and all preceding plaintext blocks
 - ✓ rearranging ciphertext blocks affects decryption
 - ✓ proper decryption of a correct ciphertext block needs the preceding n/s ciphertext blocks to be correct

♦ Error propagation:

- ✓ one bit error in a ciphertext block C_j has an effect on the decryption of that and the next n/s ciphertext blocks (the error remains in the shift register for n/s steps)
 - P_j' has bit errors where C_j had, all the other erroneous plaintext blocks are garbage
 - ✓ an attacker may cause predictable bit changes in the j-th plaintext block

\diamond Error recovery:

✓ self synchronizing, but requires n/s blocks to recover

Block Cipher Modes of Operation

- ECB Electronic Codebook
 - used to encipher a single plaintext block (e.g., a DES key)
- CBC Cipher Block Chaining
 - repeated use of the encryption algorithm to encipher a message consisting of many blocks
- CFB Cipher Feedback
 - used to encipher a stream of characters, dealing with each character as it comes
- OFB Output Feedback
 - another method of **stream** encryption, used on noisy channels
- CTR Counter
 - simplified OFB with certain advantages

OFB mode

• encrypt

• decrypt

Properties of the OFB mode

- ♦ A different IV should be used for every new message, otherwise messages will be encrypted with the same key stream
- \diamond The IV can be sent in clear
 - ✓ however, if the IV is modified by the attacker, then the cipher will never recover (unlike CFB)
- Ciphertext block C_i depends on P_j only (does not depend on the preceding plaintext blocks)
 - ✓ however, rearranging ciphertext blocks affects decryption

♦ Error propagation:

✓ one bit error in a ciphertext block C_j has an effect on the decryption of only that ciphertext block

 \checkmark P_i' has bit errors where C_i had

✓ an attacker may cause prédictable bit changes in the j-th plaintext block

\diamond Error recovery:

- \checkmark recovers from bit errors
- ✓ never recovers if bits are lost or the IV is modified

Block Cipher Modes of Operation

- ECB Electronic Codebook
 - used to encipher a single plaintext block (e.g., a DES key)
- CBC Cipher Block Chaining
 - repeated use of the encryption algorithm to encipher a message consisting of many blocks
- CFB Cipher Feedback
 - used to encipher a stream of characters, dealing with each character as it comes
- OFB Output Feedback
 - another method of **stream** encryption, used on noisy channels
- CTR Counter
 - simplified OFB with certain advantages

CTR mode

> Decrypt

Properties of the CTR mode

- ♦ Similar to OFB
- \diamond Cycle length depends on the size of the counter (typically 2ⁿ)
- \diamond The i-th block can be decrypted independently of the others
 - ✓ parallelizable (unlike OFB)
 - ✓ random access
- ♦ The values to be XORed with the plaintext can be pre-computed
- \diamond At least as secure as the other modes
- note1: in CFB, OFB, and CTR mode only the encryption algorithm is used (decryption is not needed), that is why some ciphers (e.g., AES) is optimized for encryption
- note2: the OFB and CTR modes essentially make a synchronous stream cipher out of a block cipher, whereas the CFB mode converts a block cipher into a self-synchronizing stream-cipher