Security and Privacy in Wireless Networks Mohammad Hossein Manshaei manshaei@gmail.com Security and Cooperation in Wireless Networks #### **TEXTBOOK REVIEW** http://secowinet.epfl.ch ## Security and Cooperation in Wireless Networks - 1. Introduction - 2. Thwarting **malice**: security mechanisms - 2.1 Naming and addressing - 2.2 Establishment of security associations - 2.3 Secure neighbor discovery - 2.4 Secure routing in multi-hop wireless networks - 2.5 Privacy protection - 2.6 Secure positioning - 3. Thwarting **selfishness**: behavior enforcement - 3.0 Brief introduction to game theory - 3.1 Enforcing fair bandwidth sharing at the MAC layer - 3.2 Enforcing packet forwarding - 3.3 Wireless operators in a shared spectrum - 3.4 Secure protocols for behavior enforcement # 3.0 Brief introduction to Game Theory - Discipline aiming at modeling situations in which actors have to make decisions which have mutual, possibly conflicting, consequences - Classical applications: economics, but also politics and biology - Example: should a company invest in a new plant, or enter a new market, considering that the competition could make similar moves? - Most widespread kind of game: non-cooperative (meaning that the players do not attempt to find an agreement about their possible moves) ## **Example 1:**The Forwarder's Dilemma ### From a problem to a game - Users controlling the devices are rational (or selfish): they try to maximize their benefit - Game formulation: G = (P,S,U) - P: set of players - S: set of strategy functions - U: set of utility functions - Reward for packet reaching the destination: 1 - Cost of packet forwarding: c (0 < c << 1) - Strategic-form representation #### Solving the Forwarder's Dilemma (1/2) Strict dominance: strictly best strategy, for any strategy of the other player(s) Strategy S_i strictly dominates if $$u_i(s_i, s_{-i}) < u_i(s_i, s_{-i}), \forall s_{-i} \in S_{-i}, \forall s_i \in S_i$$ where: $u_i \in U$ utility function of player i $S_{-i} \in S_{-i}$ strategies of all players except player i In Example 1, strategy Drop strictly dominates strategy Forward | Green | | | |---------|------------|---------| | Blue | Forward | Drop | | Forward | (1-c, 1-c) | (-c, 1) | | Drop | (1, -c) | (0, 0) | #### Solving the Forwarder's Dilemma (2/2) #### **Solution by iterative strict dominance:** ### Nash equilibrium Nash Equilibrium: no player can increase his utility by deviating unilaterally (Drop, Drop) is the **only** Nash equilibrium of this game ## Example 2: The Multiple Access game Reward for successful transmission: 1 Cost of transmission: c (0 < c << 1) There is no strictly dominating strategy There are two Nash equilibria ### More on game theory #### **Pareto-optimality** A strategy profile is Pareto-optimal if the payoff of a player cannot be increased without decreasing the payoff of another player **Properties** of Nash equilibria to be investigated: - uniqueness - efficiency (Pareto-optimality) - emergence (dynamic games, agreements) Promising area of application in wireless networks: **cognitive radios**, **Social Networks**, ## Security and Cooperation in Wireless Networks - 1. Introduction - 2. Thwarting **malice**: security mechanisms - 2.1 Naming and addressing - 2.2 Establishment of security associations - 2.3 Secure neighbor discovery - 2.4 Secure routing in multi-hop wireless networks - 2.5 Privacy protection - 2.6 Secure positioning - 3. Thwarting **selfishness**: behavior enforcement - 3.0 Brief introduction to game theory - 3.1 Enforcing fair bandwidth sharing at the MAC layer - 3.2 Enforcing packet forwarding - 3.3 Wireless operators in a shared spectrum - 3.4 Secure protocols for behavior enforcement ## 3.1 Enforcing fair bandwidth sharing at the MAC layer - Kyasanur and Vaidya, DSN 2003 - http://domino.epfl.ch - Cagalj et al., *Infocom 2005* (game theory model for CSMA/CA ad hoc networks) ## Security and Cooperation in Wireless Networks - 1. Introduction - 2. Thwarting malice: security mechanisms - 2.1 Naming and addressing - 2.2 Establishment of security associations - 2.3 Secure neighbor discovery - 2.4 Secure routing in multi-hop wireless networks - 2.5 Privacy protection - 2.6 Secure positioning - 3. Thwarting **selfishness**: behavior enforcement - 3.0 Brief introduction to game theory - 3.1 Enforcing fair bandwidth sharing at the MAC layer - 3.2 Enforcing packet forwarding - 3.3 Wireless operators in a shared spectrum - 3.4 Secure protocols for behavior enforcement ### 3.2 Enforcing packet forwarding Usually, the devices are assumed to be cooperative. But what if they are not, and there is no incentive to cooperate? - V. Srinivasan, P. Nuggehalli, C. Chiasserini, and R. Rao, Infocom 2003, IEEE TWC 2005 - M. Felegyhazi, JP Hubaux, and L. Buttyan, Personal Wireless Comm. Workshop 2003, IEEE TMC 2006 ### **Modeling Packet Forwarding** as a Game Strategy: cooperation level time slot: ## Security and Cooperation in Wireless Networks - 1. Introduction - 2. Thwarting **malice**: security mechanisms - 2.1 Naming and addressing - 2.2 Establishment of security associations - 2.3 Secure neighbor discovery - 2.4 Secure routing in multi-hop wireless networks - 2.5 Privacy protection - 2.6 Secure positioning - 3. Thwarting **selfishness**: behavior enforcement - 3.0 Brief introduction to game theory - 3.1 Enforcing fair bandwidth sharing at the MAC layer - 3.2 Enforcing packet forwarding - 3.3 Wireless operators in a shared spectrum - 3.4 Secure protocols for behavior enforcement ### 3.3 Games between wireless operators Multi-domain sensor networks - Typical cooperation: help in packet forwarding - Can cooperation emerge spontaneously in multi-domain sensor networks based solely on the self-interest of the sensor operators? #### 3.3 Border games of cellular operators (1/3) #### 3.3 Border games of cellular operators (2/3) - Two CDMA operators: A and B - Adjust the pilot signals - Power control game (no power cost): - players = operators - strategies = pilot powers - payoffs = attracted users (best SINR) Signal-to-interference-plus-noise ratio $$SINR_{Av}^{pilot} = \frac{G_p^{pilot} \cdot P_A \cdot d_{Av}^{-\alpha}}{N_0 \cdot W + I_{own}^{pilot} + I_{other}^{pilot}}$$ Own-cell interference $$I_{own}^{pilot} = \mathcal{S} \cdot d_{Av}^{-\alpha} \left(\sum_{w \in M_A} T_{Aw} \right)$$ Other-to-own-cell interference $$I_{other}^{pilot} = \eta \cdot d_{Bv}^{-\alpha} \left(P_B + \sum_{w \in M_B} T_{Bw} \right)$$ where: G_n^{pilot} – pilot processing gain $P_{\!\scriptscriptstyle A}^{^{p}}$ – pilot signal power of BS A $d_{\scriptscriptstyle Av}^{-lpha}$ — path loss between A and v \mathcal{S} – own-cell interference factor η — other-to-own-cell interference factor $T_{\scriptscriptstyle Aw}$ – traffic signal power assigned to w by BS A $M_{_{A}}$ – set of users attached to BS A #### 3.3 Border games of cellular operators (3/3) - Unique and Pareto-optimal Nash equilibrium - Higher pilot power than in the standard Ps = 2W - 10 users in total Extended game with power costs = Prisoner's Dilemma where: Player B $P^s \qquad P^*_B$ Player A $P^A \qquad U,U \qquad U-\Delta,U+\Delta-C^*$ $U+\Delta-C^*,U-\Delta \qquad U-C^*,U-C^*$ U – fair payoff (half of the users) Δ – payoff difference by selfish behavior C* - cost for higher pilot power ## Security and Cooperation in Wireless Networks - 1. Introduction - 2. Thwarting **malice**: security mechanisms - 2.1 Naming and addressing - 2.2 Establishment of security associations - 2.3 Secure neighbor discovery - 2.4 Secure routing in multi-hop wireless networks - 2.5 Privacy protection - 2.6 Secure positioning - 3. Thwarting **selfishness**: behavior enforcement - 3.0 Brief introduction to game theory - 3.1 Enforcing fair bandwidth sharing at the MAC layer - 3.2 Enforcing packet forwarding - 3.3 Wireless operators in a shared spectrum - 3.4 Secure protocols for behavior enforcement # 3.4 Secure protocols for behavior enforcement - Self-organized ad hoc network - Investigation of both routing and packet forwarding S. Zhong, L. E. Li, Y. G. Liu, and Y. R. Yang. On designing incentive-compatible routing and forwarding protocols in wireless ad hoc networks – an integrated approach using game theoretical and cryptographic techniques Mobicom 2005 ## On Non-Cooperative Location Privacy: A Game-theoretic Analysis Julien Freudiger, Mohammad Hossein Manshaei, Jean-Pierre Hubaux, and David C. Parkes #### **Pervasive Wireless Networks** Vehicular networks Mobile Social networks **Human sensors** Personal WiFi bubble ### **New Context-Based Applications** Search for local services - Connect with friends and strangers - Bluedating, bluelocator, bluetella - Aka-Aki - Friend finder - Improve urban mobility - Vehicular Networks # Need for Peer-to-Peer Communications WiFi/Bluetooth enabled **Identifier** Message Identifier = Pseudonym ### **System and Threat Model** - N mobile nodes - WiFi/Bluetooth enabled - Beacons - Offline CA to provide pseudonyms Global passive eavesdropper tracks location of mobile nodes ### **Location Privacy Problem** Passive adversary monitors identifiers used in peer-to-peer communications #### **Previous Work** Message - Pseudonymity is not enough for location privacy [1, 2] - Removing pseudonyms is not enough as well [3] #### Spatio-Temporal correlation of traces - [1] P. Golle and K. Partridge. On the Anonymity of Home/Work Location Pairs. Pervasive Computing, 2009 - [2] B. Hoh et al. Enhancing Security & Privacy in Traffic Monitoring Systems. Pervasive Computing, 2006 - [3] B. Hoh and M. Gruteser. Protecting location privacy through path confusion. SECURECOMM, 2005 #### **Location Privacy with Mix Zones** Spatial decorrelation: Remain silent Temporal decorrelation: Change pseudonym ### Mix Zone Privacy Gain ### Cost caused by Mix Zones Turn off transceiver Routing is difficult Load authenticated pseudonyms y ### **Location Privacy with Mix Zones** Spatial decorrelation: Remain silent Temporal decorrelation: Change pseudonym ### User-Centric Location Privacy Model Privacy = $A_i(T)$ – Privacy Loss ### **Assumptions** #### **Pseudonym Change game** - Simultaneous decision - Players want to maximize their payoff - Consider privacy upperbound $A_i(T) = log_2(n(t))$ ### **Game Model** #### Players - Mobile nodes in transmission range - There is a game iif n(t) > 1 #### Strategy - Cooperate (C): Change pseudonym - Defect (D): Do not change pseudonym ### **Sequence of Pseudonym Change Games** # **Payoff Function** If $$(s_i = C) \land (n_C(s_{-i}) > 0)$$ then $$T_i^1 := t$$ $$u_i(t, T_i^1, C, s_i) := A_i(T_i^1) - \gamma$$ If $(s_i = C) \land (n_C(s_{-i}) = 0)$ then $$u_i(t, T_i^1, C, s_i) := \max(0, u_i^- - \gamma)$$ $$If (s_i = D) \text{, then}$$ $$u_i(t, T_i^1, D, s_i) := \max(0, u_i^-)$$ where $$u_i^- = A_i(T_i^1) - \gamma - \beta_i(t, T_i^1) - \gamma \alpha_i(t, T_i^1)$$ the payoff function at the time immediately prior to t $$S_{-i} \text{ the strategy of the opponents of } i$$ $$n_C(s_{-i}) \text{ the number of cooperating nodes besides } i$$ # **C-Game** # Complete information Each player knows the payoff of its opponents # 2-Player C-Game | $P_1 \backslash P_2$ | C | D | | | | |----------------------|------------------------|------------------------|--|--|--| | C | $(1-\gamma,1-\gamma)$ | $(u_1^ \gamma, u_2^-)$ | | | | | D | $(u_1^-, u_2^ \gamma)$ | (u_1^-, u_2^-) | | | | Two Nash Equilibria (NE): (C,C) & (D,D) ## **Best Response Correspondence** # n-Player C-Game #### **Theorem** The static n-player pseudonym change C-game has at least 1 and at most [n/2] Nash equilibria. - All Defection is always a NE - A NE with cooperation exists iif there is a group of k users with $$\log_2(k) - \gamma > u_i^-, \forall i$$ in the group of k nodes #### **C-Game Results** # Result 1: high coordination among nodes at NE Change pseudonyms only when necessary Otherwise defect # **I-Game** ### Incomplete information Players don't know the payoff of their opponents ## **Bayesian Game Theory** Define type of player $\theta_i = u_i^-$ Predict action of opponents based on pdf over type $$f(\theta_i)$$ ## **Environment** ## **Threshold Strategy** A threshold determines players' action Probability of cooperation is $$F(\tilde{\theta}_i) = Pr(\theta_i \le \tilde{\theta}_i) = \int_0^{\tilde{\theta}_i} f(\theta_i) d\theta_i$$ # 2-Player *I*-Game Bayesian NE Find threshold θ_i^* such that Average utility of cooperation Average utility of defection Result 2: Large cost increases cooperation probability. #### Result 3: Strategies adapt to your environment. # Result 4: A large number of nodes n provides incentive not to cooperate #### **PseudoGame Protocol** ``` Require: Node i knows the probability distribution f(\theta) Require: The current location privacy of node i is u_i^- 1: if (Change of velocity within sp_{max}) & (At least one neighbor) then Broadcast initiation message to change pseudonym. Goto 6 4: else 5: if (Receive Initiation message) & (message is valid) then 6: n \Leftarrow estimate(n) //Number of neighbors Calculate \tilde{\theta}_i^* as solution of \sum_{k=0}^{n-1} Pr(K = k) u_i(C, \underline{s}_{-i}) - u_i^- = 0 \text{ wrt } \tilde{\theta}_i, where Pr(K = k) \leftarrow \binom{n}{k} q^k (1 - q)^{n-k} and q \Leftarrow \int_0^{\tilde{\theta}_i} f(\theta_i) d\theta_i if u_i^- \leq \tilde{\theta}_i^* then 8: Play C 10: Comply with silent period sp_{max} 11: else 12: Play D 13: else 14: Keep pseudonym ``` # **Tracking Games** Placement of active/passive mix zones versus placement of eavesdropping stations #### METHODOLOGY #### Who is Malicious and Who is Selfish? Harm everyone: viruses,... Big brother Selective harm: DoS,... Spammer Cyber-gangster: phishing attacks, trojan horses,... **Greedy operator** Selfish mobile station There is no watertight boundary between malice and selfishness → Both security and game theory approaches can be useful #### From Discrete to Continuous Warfare-inspired Manichaeism: The more subtle case of commercial applications: - Security often needs incentives - Incentives usually must be secured # Book structure (1/2) | Security a cooperation of the co | ind
ition
inisms | ng and add | dressing
dressing
dressing
dressing
dressing
dressing
dressing
dressing
dressing
dressing
dressing
dressing
dressing
dressing
dressing
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressocial
dressoci | tions
ing heighb | or discove | Enforce | ing fair MA | o discont | ng
aging
Behavi | |--|------------------------|------------|--|---------------------|------------|---------|-------------|-----------|-----------------------| | Small operators, community networks | Χ | Х | | | Х | X | | X | Х | | Cellular operators in shared spectrum | X | | | | X | X | | X | X | | Mesh networks | X | X | X | X | X | X | | X | ? | | Hybrid ad hoc
networks | X | X | Х | Х | X | X | X | X | Х | | Self-organized | X | X | X | X | X | X | X | | X | | ad hoc networks | Х | Х | Х | Х | Х | ? | ? | ? | ? | | Vehicular networks Sensor networks | X | X | X | X | X | ? | | X | ? | | RFID networks | Х | ? | Х | | Х | | | | ? | Part I Part II Part III 58 ## **Book structure (2/2)** #### **Security** Cooperation - 12. Behavior enforcement - 8. Privacy protection - 7. Secure routing - 6. Secure neighbor discovery - 5. Security associations - 4. Naming and addressing 11. Operators in shared spectrum 10. Selfishness in PKT FWing 9. Selfishness at MAC layer Appendix A: Security and crypto 3. Trust 2. Upcoming networks 1. Existing networks Appendix B: Game theory #### Conclusion - Upcoming wireless networks bring formidable challenges in terms of security and cooperation - The proper treatment requires a thorough understanding of upcoming wireless networks, of security, and of game theory