

Mobile Networking

Mohammad Hossein Manshaei

manshaei@gmail.com

1393

ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS

Distance Vector Based Routing

- Each node maintains a table giving the distance from itself to all possible destination.
- Periodically broadcasts update packets to each of the neighbors.
- Bellman-Ford algorithm
 - Finding the shortest path to determine the correct next hop of its neighbors.
- Routers forward the packet to the correct next hop router given their tables
- Problem: "route looping" and "count to infinity"

Link State Routing Algorithm

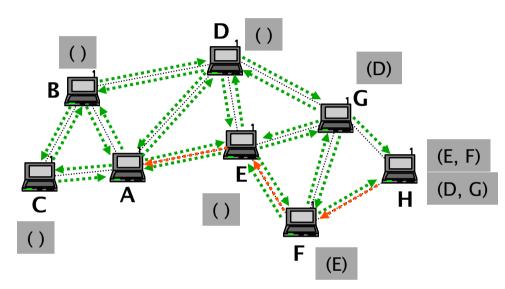
- Each node maintains a view of the network topology with a cost for each link.
- Each node periodically broadcasts the cost of its outing links to all other nodes.
- Using a shortest-path algorithm to choose its next hop for each destination.

Ad hoc Routing Protocols: Classification

- > Topology-based protocols
 - Proactive (Always up-to-date routing information)
 - Distance vector based (e.g., DSDV)
 - Link-state (e.g., OLSR)
 - Reactive (on-demand)
 - Distance vector based (e.g., AODV)
 - Source routing (e.g., DSR)
- > Position-based protocols
 - greedy forwarding (e.g., GPSR, GOAFR)
 - restricted directional flooding (e.g., DREAM, LAR)
- > Hybrid approaches

Dynamic Source Routing (DSR)

>On-demand source routing protocol


>Two components:

- Route discovery
 - used only when source S attempts to send a packet to destination D
 - based on flooding of Route Requests (RREQ) and returning Route Replies (RREP)

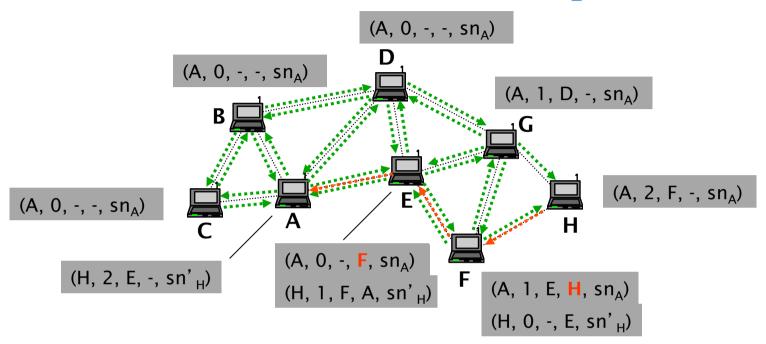
Route maintenance

 makes S able to detect route errors (e.g., if a link along that route no longer works)

DSR Route Discovery Illustrated

A → *: [RREQ, id, A, H; ()]
B → *: [RREQ, id, A, H; (B)]
C → *: [RREQ, id, A, H; (C)]
D → *: [RREQ, id, A, H; (D)]
E → *: [RREQ, id, A, H; (E)]
F → *: [RREQ, id, A, H; (E, F)]
G → *: [RREQ, id, A, H; (D,G)]

 $H \rightarrow A$: [RREP, <source route>; (E, F)]


where <source route> is obtained

- I. From the route cache of H
- 2. By reversing the route received in the RREQ
 - > works only if all the links along the discovered route are bidirectional
 - > IEEE 802.11 assumes that links are bidirectional
- 3. by executing a route discovery from H to A
 - > discovered route from A to H is piggy backed to avoid infinite recursion

Ad-hoc On-demand Distance Vector Routing (AODV)

- On-demand distance vector routing
- Uses sequence numbers to ensure loop-freedom and to detect out-of-date routing information
- > Operation is similar to that of DSR but the nodes maintain routing tables instead of route caches
- > A routing table entry contains the following:
 - destination identifier
 - number of hops needed to reach the destination
 - identifier of the next hop towards the destination
 - list of precursor nodes (that may forward packets to the destination via this node)
 - destination sequence number

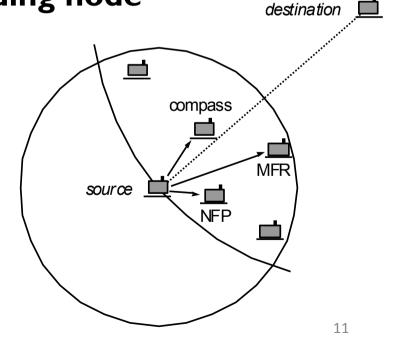
AODV Route Discovery Illustrated

A → *: [RREQ, id, A, H, 0, sn_A , sn_H]
B → *: [RREQ, id, A, H, 1, sn_A , sn_H]
C → *: [RREQ, id, A, H, 1, sn_A , sn_H]
D → *: [RREQ, id, A, H, 1, sn_A , sn_H]
E → *: [RREQ, id, A, H, 1, sn_A , sn_H]
F → *: [RREQ, id, A, H, 2, sn_A , sn_H]
G → *: [RREQ, id, A, H, 2, sn_A , sn_H]

 $H \rightarrow F$: [RREP, A, H, 0, sn'_H] $F \rightarrow E$: [RREP, A, H, 1, sn'_H] $E \rightarrow A$: [RREP, A, H, 2, sn'_H]

Proactive Routing

I. Link-State Protocols


 Each node periodically floods the network with a message that contains the state of the links of that node (OLSR in MANET)

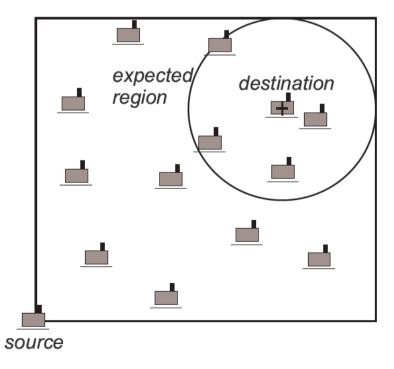
2. Distance Vector Protocols

 Nodes execute a distributed shortest path algorithm to determine the best route to every other node in the network (DSDV in MANET)

Example: Position-based Greedy Forwarding

- > Assumptions
 - nodes are aware of their own positions and that of their neighbors
 - packet header contains the position of the destination
- Packet is forwarded to a neighbor that is closer to the destination than the forwarding node
 - Most Forward within Radius (MFR)
 - Nearest with Forward Progress (NFP)
 - Compass forwarding
 - Random forwarding
- Additional mechanisms are needed to cope with local minimums (dead-ends)

Distance Routing Effect Algorithm for Mobility (Dream)


- > An expected region of the destination is calculated.
- \succ The direction to the destination is defined by the line between the forwarding node and the center of the destination's expected region, and the angle ϕ .
- Each neighbor of the forwarding node that lies within this angle must re-broadcast the packet.

These calculations are repeated by each intermediate node that receives the packet until

it reaches the destination.

Location Aided Routing (LAR)

- The source of the data packet calculates an expected region of the destination, and then the packet is flooded within the rectangular region.
- Nodes outside this region will drop packets

