

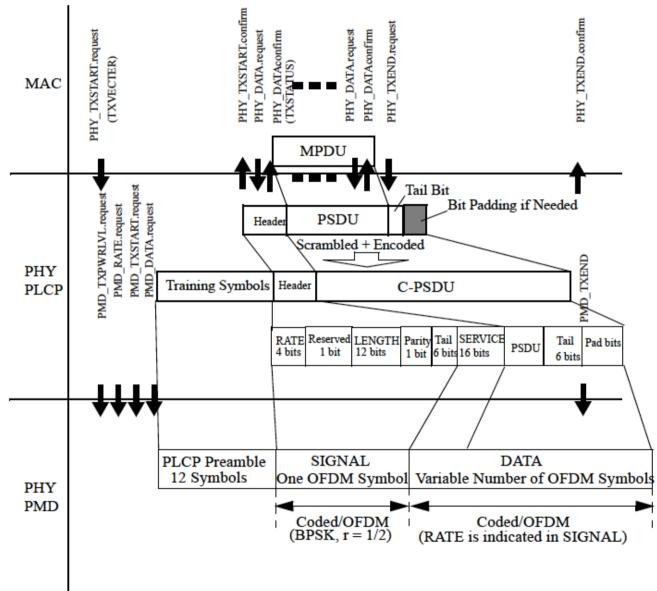
1

Mobile Networking

Mohammad Hossein Manshaei <u>manshaei@gmail.com</u> 1393

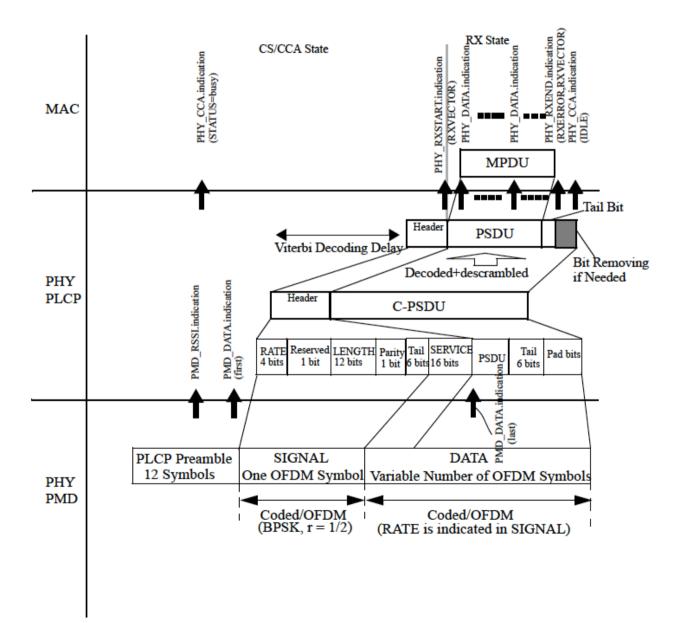
PLCP format, Data Rates, OFDM, Modulations, ...

802.11A PHYSICAL LAYER


Contents

- IEEE 802.11a: Transmit and Receive Procedure
- 802.11a Modulations
 - BPSK Performance Analysis
- Convolutional Encoder and Viterbi Performance
- OFDM in 802.11a
 - 802.11a Channels and Timing Parameters
- 802.11a PLCP Preamble and Header Format

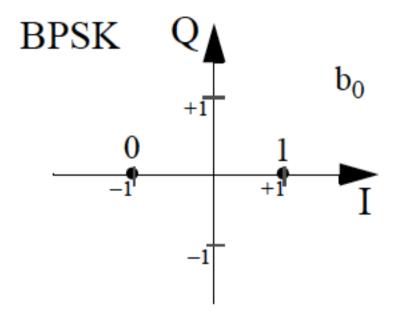
IEEE 802.11a


- IEEE Standard 802.11a-1999--High-speed Physical Layer Extension in the 5 GHz Band:
- Frequency range: 5.15-5.25, 5.25-5.35, and 5.725-5.825 GHz.
- Orthogonal Frequency Division Multiplexing (OFDM).
- Data payload communication capability: 6, 9, 12, 18, 24, 36, 48, and 54 Mbps.

PLCP Transmit Procedure

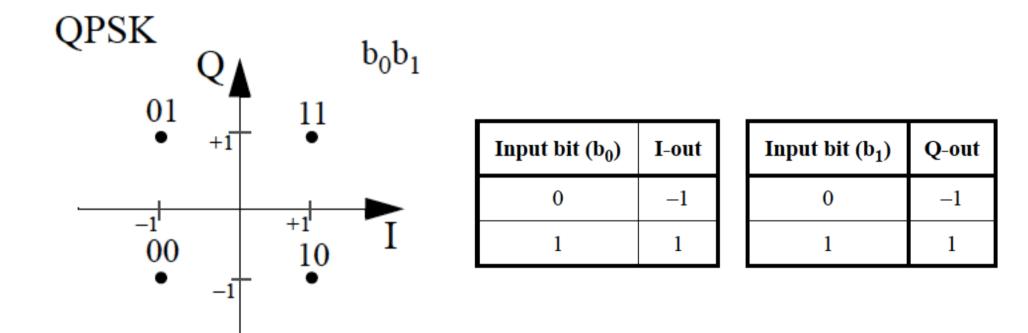
5

PLCP Receive Procedure

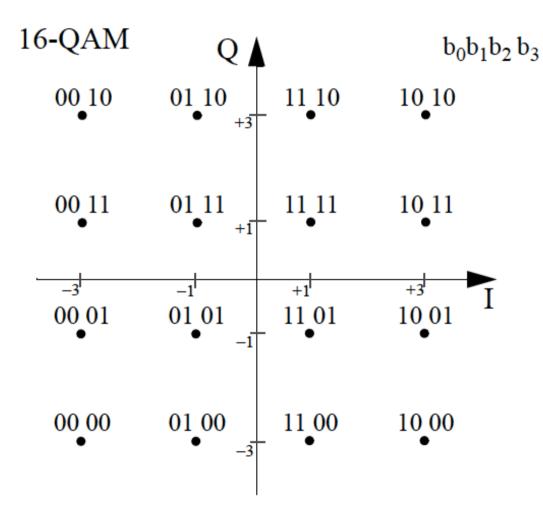

Contents

- IEEE 802.11a: Transmit and Receive Procedure
- 802.11a Modulations
 - BPSK Performance Analysis
- Convolutional Encoder and Viterbi Performance
- OFDM in 802.11a
 - 802.11a Channels and Timing Parameters
- 802.11a PLCP Preamble and Header Format

Rate-Dependent Parameters in IEEE 802.11a


Modulation	Coding rate (R)	Coded bits per subcarrier (N _{BPSC})	Coded bits per OFDM symbol (N _{CBPS})	Data bits per OFDM symbol (N _{DBPS})	Data rate (Mb/s) (20 MHz channel spacing)	Data rate (Mb/s) (10 MHz channel spacing)	Data rate (Mb/s) (5 MHz channel spacing)
BPSK	1/2	1	48	24	6	3	1.5
BPSK	3/4	1	48	36	9	4.5	2.25
QPSK	1/2	2	96	48	12	6	3
QPSK	3/4	2	96	72	18	9	4.5
16-QAM	1/2	4	192	96	24	12	6
16-QAM	3/4	4	192	144	36	18	9
64-QAM	2/3	6	288	192	48	24	12
64-QAM	3/4	6	288	216	54	27	13.5
				· · · · · ·			

BPSK Modulation Table



Input bit (b ₀)	I-out	Q-out
0	-1	0
1	1	0

QPSK Modulation Table

I6-QAM Modulation Table

Input bits (b ₀ b ₁)	I-out	Input bits (b ₂ b ₃)
00	-3	00
01	-1	01
11	1	11
10	3	10

Q-out

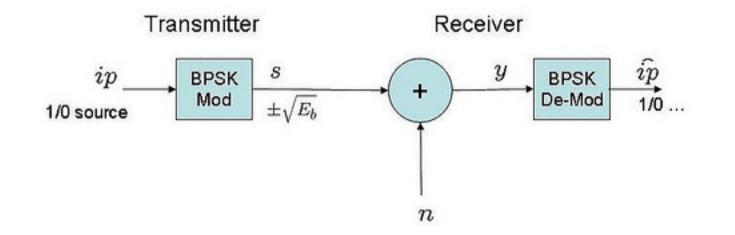
-3 -1 1

3

64-QAM Modulation Table

64-QAM			Q 💧		b	0 ^b 1 ^b 2 ^b 3 ^b 4 ^b 5				
000_100	001 100	011_100	010 100 110 100	111 100 •	101 100	100 100 •				
000 101	001 101	011_101	010 101 110 101	111_101 •	101 101	100_101				
							Input bits (b ₀ b ₁ b ₂)	I-out	Input bits (b ₃ b ₄ b ₅)	Q-out
000 111	001 111 •	011 111 •	010 111 110 111 $+3$	111 111 •	101 111	100 111	000	-7	000	-7
							001	-5	001	-5
000 110	001_110	011_110	010 110 110 110 $+1$	111_110	101_110	100 110	011	-3	011	-3
							010	-1	010	-1
_7 ⁱ 000 010	_5 001 010	-3 ¹ 011 010	-1^{i} $+1^{i}$ 010 010 110 010	+3 ⁱ 111_010	+9 101 010	+7 100_010 I	110	1	110	1
•	•	•	-1	•	•	•	111	3	111	3
							101	5	101	5
000 011	001 011	011 011	010 011 110 011	111 011	101 011	100 011	100	7	100	7
000 001	001_001	011_001	010 001 110 001 -5	111 001 •	101_001	100 001 •				
000 000	001 000	011 000 •	010 000 110 000	111 000 •	101_000	100 000				

12


Constellation Mapping

- $d_m = I + Qj$
- The output value is also normalized:

$$d_m = (I + Qj) / K_{MOD}$$

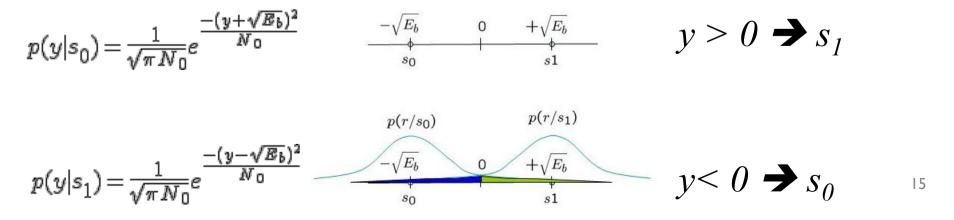
Modulation	Кмор
BPSK	1
QPSK	$1/\sqrt{2}$
16-QAM	$1/\sqrt{10}$
64-QAM	$1/\sqrt{42}$

BPSK Performance Analysis

Channel Model: AWGN

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} \qquad \qquad \mu = 0$$
$$\sigma^2 = \frac{N_0}{2}$$

BPSK Performance Analysis


• Received Signal (y):

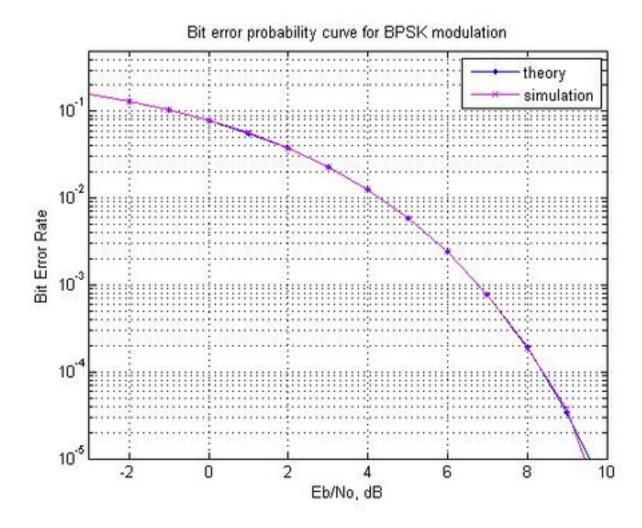
 $> y = s_1 + n$ when bit 1 transmitted

 $> y = s_0 + n$ when bit θ is transmitted

• The conditional probability distribution function (PDF) of y for the two cases are

Correct Detection:

BPSK BER Calculation


• The probability of error if "1" is transmitted

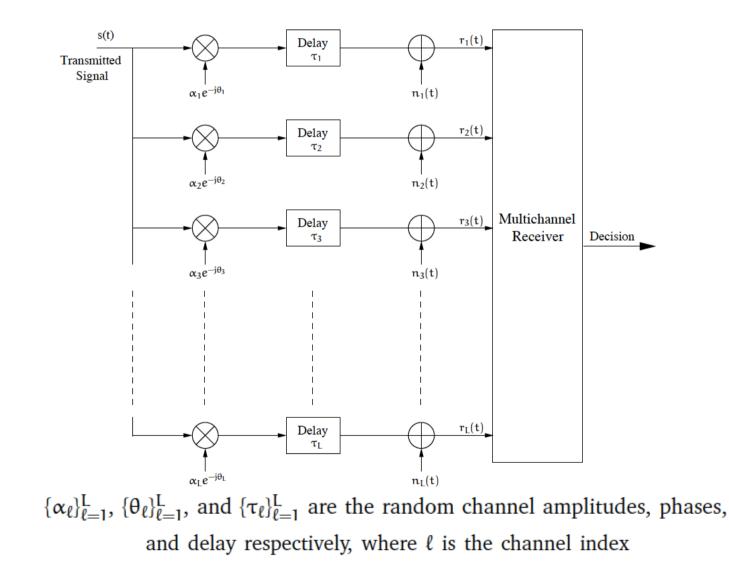
$$p(e|s_{1}) = \frac{1}{\sqrt{\pi N_{0}}} \int_{-\infty}^{0} e^{\frac{-(y-\sqrt{B_{b}})^{2}}{N_{0}}} dy = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-z^{2}} dz = \frac{1}{2} erfc \left(\sqrt{\frac{E_{b}}{N_{0}}}\right)$$
$$erfc(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-x^{2}} dx$$

• Probability of bit error $P_b = p(s_1)p(e|s_1) + p(s_0)p(e|s_0)$

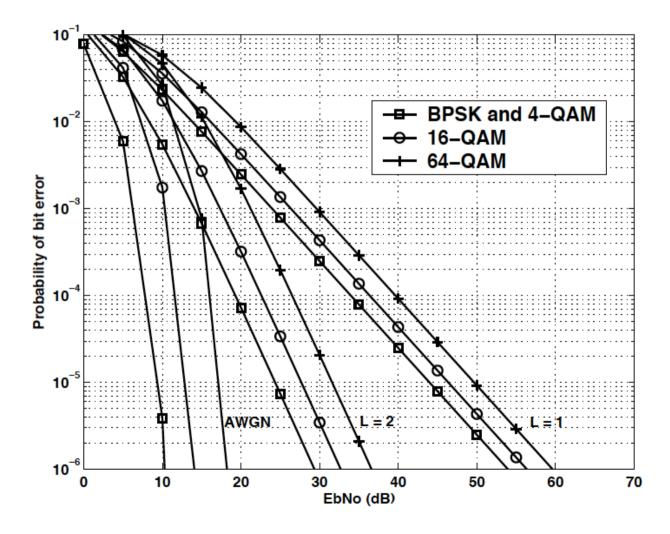
$$P_b = \frac{1}{2} erfc \left(\sqrt{\frac{E_b}{N_0}} \right)$$

BER for BPSK Modulation

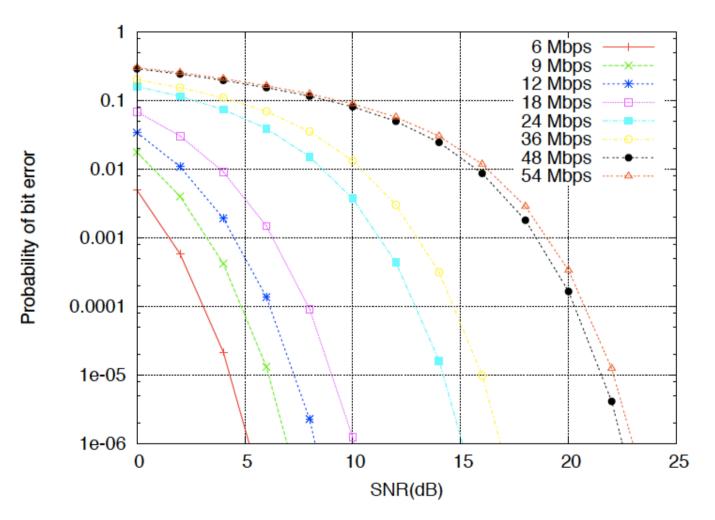
802. I la Modulation Performance in AWGN


Modulation	Symbol error	Bit error
BPSK	$Q\left(\sqrt{2 \cdot \frac{\mathcal{E}_s}{N_o}}\right)$	$Q\left(\sqrt{2 \cdot \frac{\mathcal{E}_{b}}{N_{o}}}\right)$
4-QAM	$2Q\left(\sqrt{\frac{\mathcal{E}_{s}}{N_{o}}}\right) - Q^{2}\left(\sqrt{\frac{\mathcal{E}_{s}}{N_{o}}}\right)$	$Q\left(\sqrt{2 \cdot \frac{\mathcal{E}_{b}}{N_{o}}}\right)$
16-QAM	$3Q\left(\sqrt{\frac{\mathcal{E}_{s}}{5N_{o}}}\right) - \frac{9}{4}Q^{2}\left(\sqrt{\frac{\mathcal{E}_{s}}{5N_{o}}}\right)$	$\frac{3}{4}Q\left(\sqrt{\frac{4\mathcal{E}_{b}}{5N_{o}}}\right) + \frac{1}{2}Q\left(3\sqrt{\frac{4\mathcal{E}_{b}}{5N_{o}}}\right)$
64-QAM	$\frac{7}{2}Q\left(\sqrt{\frac{\mathcal{E}_{s}}{21N_{o}}}\right) - \frac{49}{16}Q^{2}\left(\sqrt{\frac{\mathcal{E}_{s}}{21N_{o}}}\right)$	$\frac{7}{12}Q\left(\sqrt{\frac{2\mathcal{E}_{b}}{7N_{o}}}\right) + \frac{1}{2}Q\left(3\sqrt{\frac{2\mathcal{E}_{b}}{7N_{o}}}\right)$

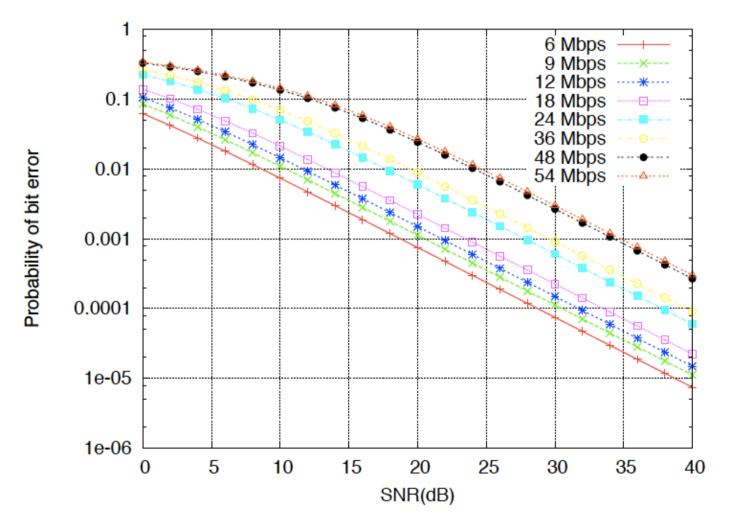
802. I la Modulation Performance in Rayleigh Fading Channel


Modulation	Symbol error	Bit error
BPSK	$\frac{1}{2} \left(1 - \sqrt{\frac{\bar{\gamma_{b}}}{1 + \bar{\gamma_{b}}}} \right)$	$\frac{1}{2} \left(1 - \sqrt{\frac{\bar{\gamma_b}}{1 + \bar{\gamma_b}}} \right)$
4-QAM	$\left(1 - \sqrt{\frac{\gamma_{\tilde{b}}}{1 + \gamma_{\tilde{b}}}}\right) - \frac{1}{4} \left(1 - \sqrt{\frac{\gamma_{\tilde{b}}}{1 + \gamma_{\tilde{b}}}} \times \frac{4}{\pi} \tan^{-1}\left(\sqrt{\frac{1 + \gamma_{\tilde{b}}}{\gamma_{\tilde{b}}}}\right)\right)$	$\frac{1}{2} \left(1 - \sqrt{\frac{\bar{\gamma_b}}{1 + \bar{\gamma_b}}} \right)$
16-QAM	$\frac{3}{2} \left(1 - \sqrt{\frac{2\bar{\gamma_{b}}/5}{1 + 2\bar{\gamma_{b}}/5}} \right) - \frac{9}{16} \left(1 - \sqrt{\frac{2\bar{\gamma_{b}}/5}{1 + 2\bar{\gamma_{b}}/5}} \times \frac{4}{\pi} \tan^{-1} \left(\sqrt{\frac{1 + 2\bar{\gamma_{b}}/5}{2\bar{\gamma_{b}}/5}} \right) \right)$	$\frac{5}{8} - \frac{3}{8}\sqrt{\frac{2\bar{\gamma_b}}{5+2\bar{\gamma_b}}} - \frac{1}{4}\sqrt{\frac{18\bar{\gamma_b}}{5+18\bar{\gamma_b}}}$
64-QAM	$\frac{7}{4} \left(1 - \sqrt{\frac{\tilde{\gamma_{b}}/7}{1 + \tilde{\gamma_{b}}/7}} \right) - \frac{49}{64} \left(1 - \sqrt{\frac{\tilde{\gamma_{b}}/7}{1 + \tilde{\gamma_{b}}/7}} \times \frac{4}{\pi} \tan^{-1} \left(\sqrt{\frac{1 + \tilde{\gamma_{b}}/7}{\tilde{\gamma_{b}}/7}} \right) \right)$	$\frac{13}{24} - \frac{7}{24}\sqrt{\frac{\gamma_{\bar{b}}}{7+\gamma_{\bar{b}}}} - \frac{1}{4}\sqrt{\frac{9\gamma_{\bar{b}}}{7+9\gamma_{\bar{b}}}}$

$\bar{\gamma_b}$ is the average signal to noise ratio per bit.


802. I la Modulation Performance with Multichannel Receiver

BER for Available Modulations in 802.11a



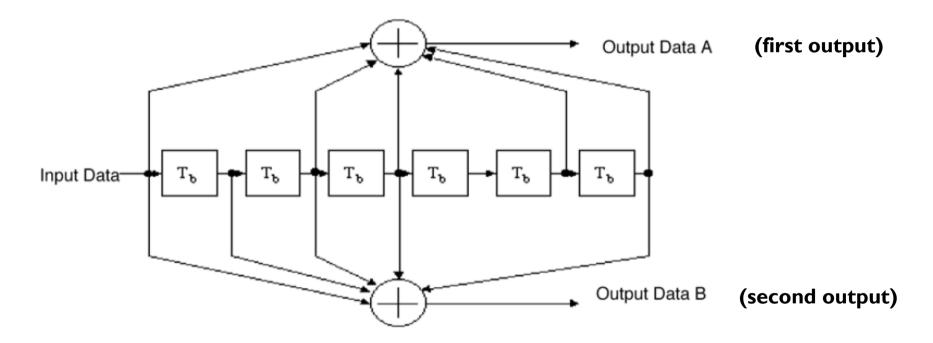
BER for Available Data Rates in 802.11a for AWGN

22

BER for Available Data Rates in 802.11a for Rayleigh Fading (L=1)

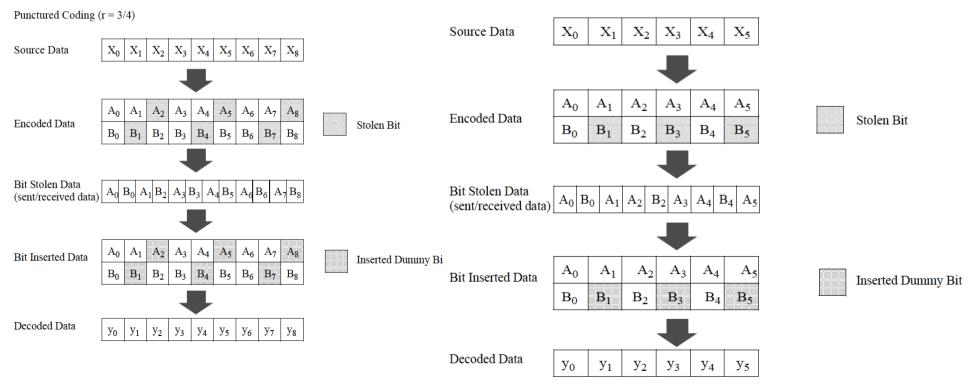
Contents

- IEEE 802.11a:Transmit and Receive Procedure
- 802.11a Modulations
 - BPSK Performance Analysis
- Convolutional Encoder and Viterbi Performance
- OFDM in 802.11a
 - 802.11a Channels and Timing Parameters
- 802.11a PLCP Preamble and Header Format


Rate-Dependent Parameters in IEEE 802.11a

Modulation	Coding rate (R)	sı	Coded bits per ubcarrier (N _{BPSC})	Coded bits per OFDM symbol (N _{CBPS})	Data bits per OFDM symbol (N _{DBPS})	Data rate (Mb/s) (20 MHz channel spacing)	Data rate (Mb/s) (10 MHz channel spacing)	Data rate (Mb/s) (5 MHz channel spacing)
BPSK	1/2		1	48	24	6	3	1.5
BPSK	3/4		1	48	36	9	4.5	2.25
QPSK	1/2		2	96	48	12	6	3
QPSK	3/4		2	96	72	18	9	4.5
16-QAM	1/2		4	192	96	24	12	6
16-QAM	3/4		4	192	144	36	18	9
64-QAM	2/3		6	288	192	48	24	12
64-QAM	3/4		6	288	216	54	27	13.5

Convolutional Encoder


• Use the industry-standard generator polynomials,

- $g_0 = 133_8$ and $g_1 = 171_8$, of rate R = 1/2,

Punctured Coding

- To omit some of the encoded bits in the transmitter
 - Thus reducing the number of transmitted bits and increasing the coding rate
 - Inserting a dummy "zero" metric into the convolutional decoder on the receive side
 - Decoding by the Viterbi algorithm is recommended.

Punctured Coding (r = 2/3)

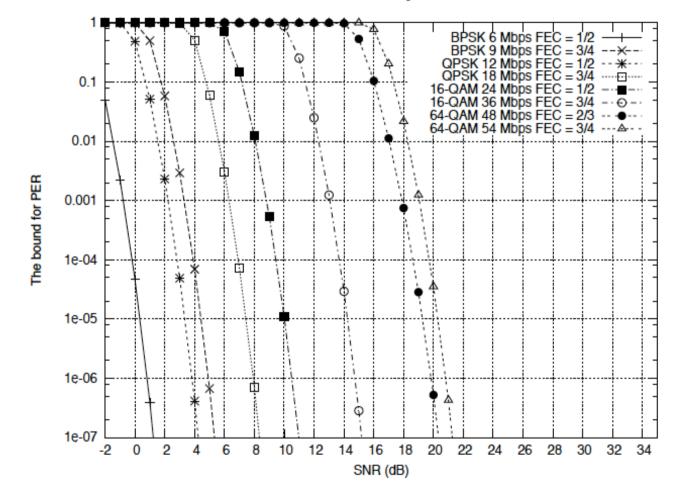
Performance of Viterbi Decoder

The upper bound probability of error: $P_e(L) \le 1 - (1 - P_u)^{8L}$

The union bound P_u of the first-event error probability is given by:

$$P_{u} = \sum_{d=d_{free}}^{\infty} a_{d} \times P_{d}$$

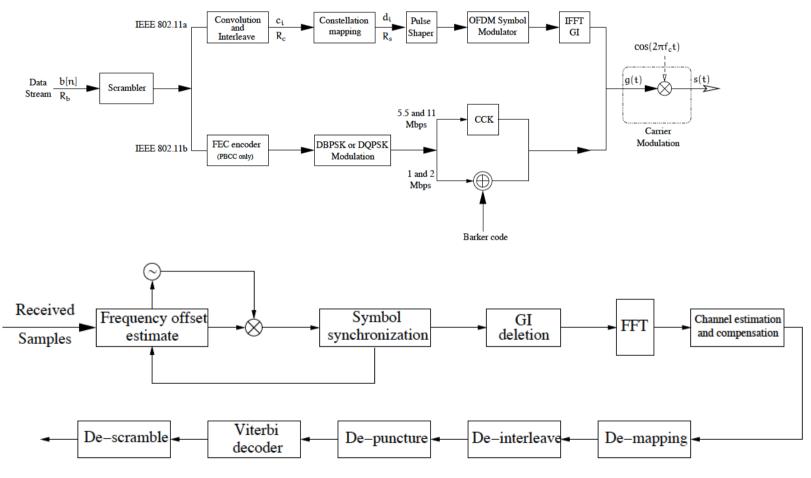
FEC rate	$\mathbf{d}_{\mathbf{f}}$	$(a_{d_f}, a_{d_f+1}, a_{d_f+2}, \cdots)$
1/2	10	(11, 0, 38, 0, 193, 0, 1331, 0, 7275, 0, 40406, 0, 234969, 0, 1337714, 0, 7594819, 0, 433775588, 0, · · ·)
2/3	6	(1, 16, 48, 158, 642, 2435, 9174, 34701, 131533, 499312, · · ·)
3/4	5	(8, 31, 160, 892, 4512, 23297, 120976, 624304, 3229885, 16721329, · · ·)


Performance of Viterbi Decoder

 P_{d} is the probability that an incorrect path at distance d from the correct path is chosen by the Viterbi decoder:

$$P_{d} = \begin{cases} \sum_{k=(d+1)/2}^{d} {\binom{d}{k}} \rho^{k} (1-\rho)^{d-k} & d \text{ is odd} \\ \\ \frac{1}{2} {\binom{d}{d/2}} \rho^{d/2} (1-\rho)^{d/2} + \sum_{k=d/2+1}^{d} {\binom{d}{k}} \rho^{k} (1-\rho)^{d-k} & d \text{ is even} \end{cases}$$

 ρ : the bit error probability for the physical modulation

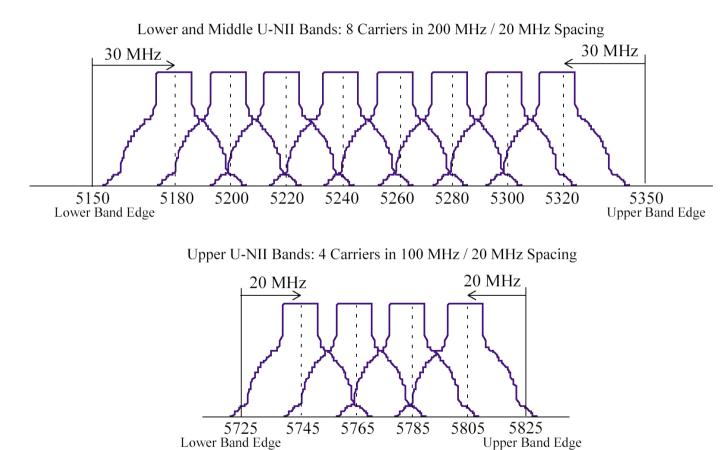

Upper Bound for the PER in 802.11a (Length=1500Bytes)

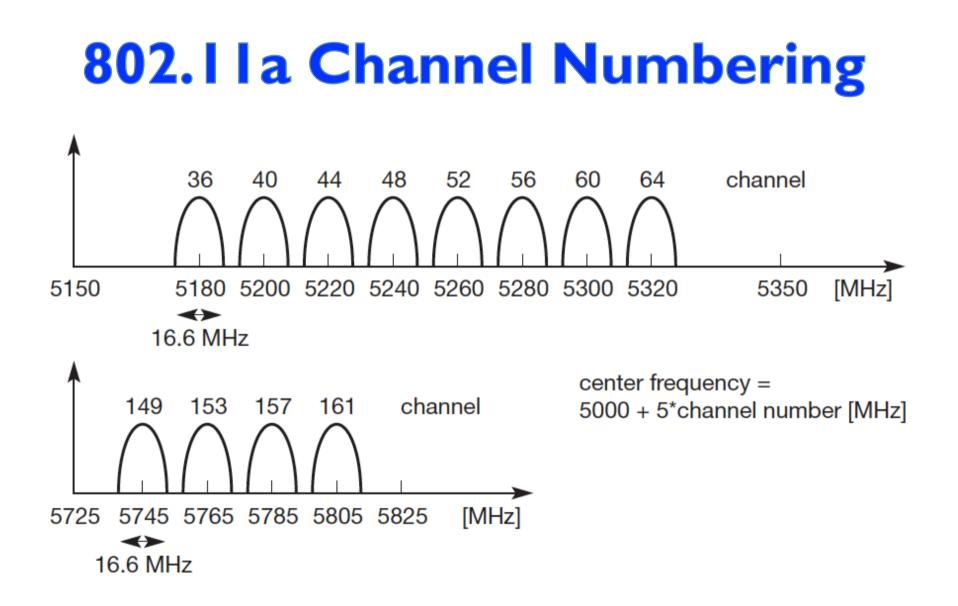
Contents

- IEEE 802.11a:Transmit and Receive Procedure
- 802.11a Modulations
 - BPSK Performance Analysis
- Convolutional Encoder and Viterbi Performance
- OFDM in 802.11a
 - 802.11a Channels and Timing Parameters
- 802.11a PLCP Preamble and Header Format

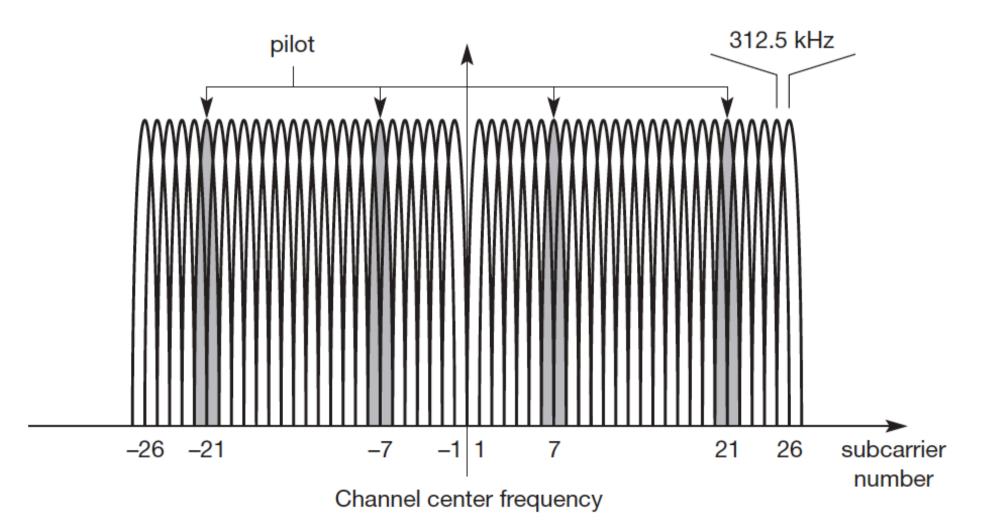
802.11 Transmission and Reception:A Complete Picture

Rate-Dependent Parameters in IEEE 802.11a

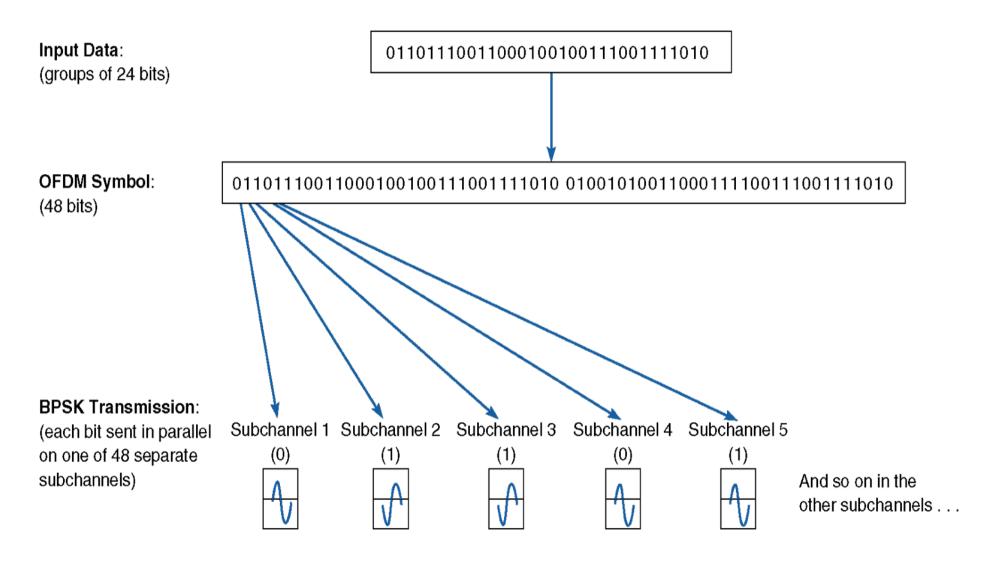

Modulation	Coding rate (R)	Coded bits per subcarrier (N _{BPSC})	Coded bits per OFDM symbol (N _{CBPS})	Data bits per OFDM symbol (N _{DBPS})	Data rate (Mb/s) (20 MHz channel spacing)	Data rate (Mb/s) (10 MHz channel spacing)	Data rate (Mb/s) (5 MHz channel spacing)
BPSK	1/2	1	48	24	6	3	1.5
BPSK	3/4	1	48	36	9	4.5	2.25
QPSK	1/2	2	96	48	12	6	3
QPSK	3/4	2	96	72	18	9	4.5
16-QAM	1/2	4	192	96	24	12	6
16-QAM	3/4	4	192	144 /	36	18	9
64-QAM	2/3	6	288	192	48	24	12
64-QAM	3/4	6	288	216	54	27	13.5

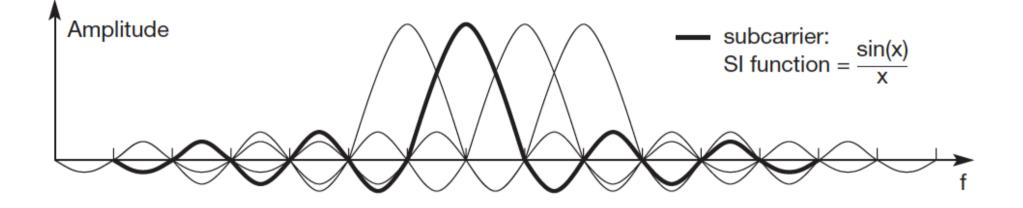

OFDM: A Brief Review

- Orthogonal frequency division multiplexing (OFDM) has very good ISI mitigation property
- Splits the high bit rate stream into many lower bit rate streams
- Each stream being sent using an independent carrier frequency


802. I la Channels

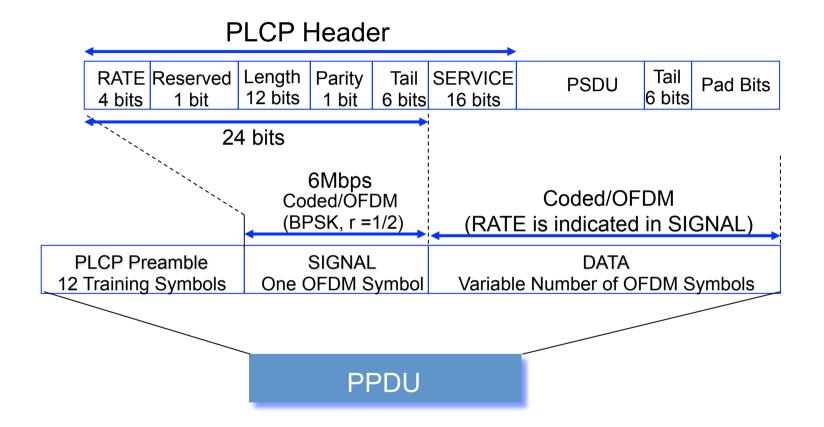
- 8 independent channels in 5.15GHz-5.35GHz
- 4 independent channels in 5.725-5.825GHz



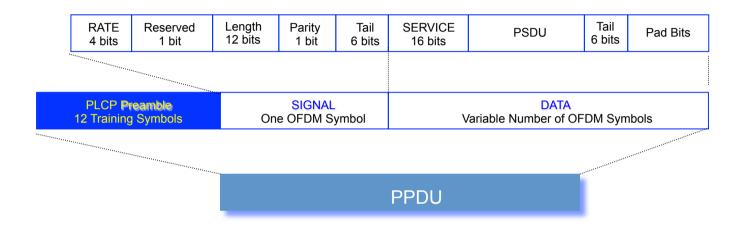

OFDM Sub-channels in 802.11a

802.11a: Use of OFDM and BPSK

Superposition of Orthogonal Frequencies

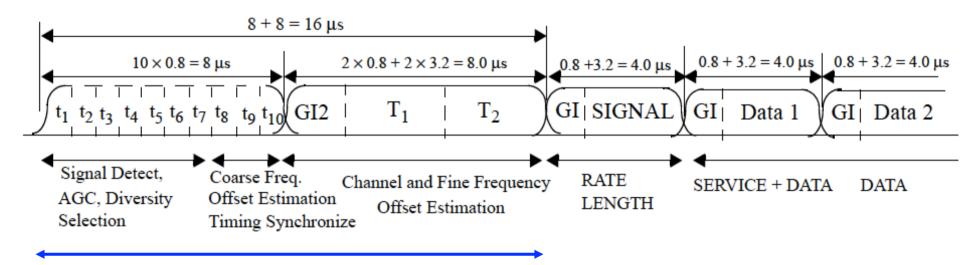


The maximum of one subcarrier frequency appears exactly at a frequency where all other subcarriers equal zero.

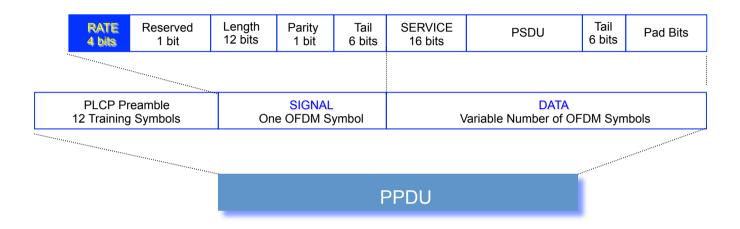

Contents

- IEEE 802.11a: Transmit and Receive Procedure
- 802.11a Modulations
 - BPSK Performance Analysis
- Convolutional Encoder and Viterbi Performance
- OFDM in 802.11a
 - 802.11a Channels and Timing Parameters
- 802.11a PLCP Preamble and Header Format

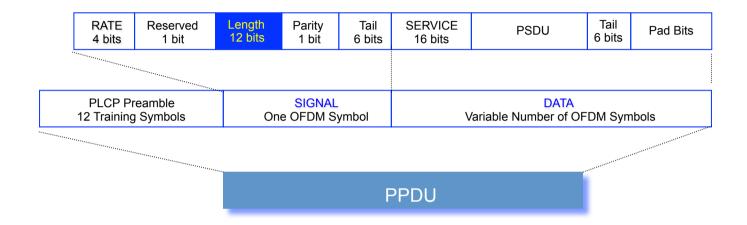
IEEE 802.11a PLCP frame format


PLCP Preamble

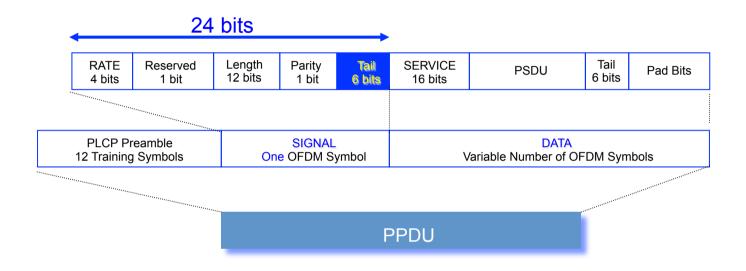
Preamble field contains


- <u>10 short training sequence</u>
 - used for AGC convergence, diversity selection, timing acquisition, and coarse frequency acquisition in the receiver
- <u>2 long training sequence</u>
 - used for channel estimation and fine frequency acquisition in the receiver
- And a guard interval (GI)

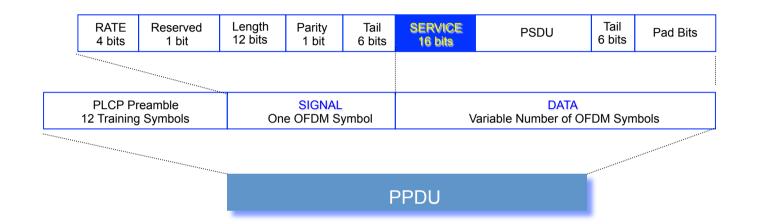
PLCP Preamble

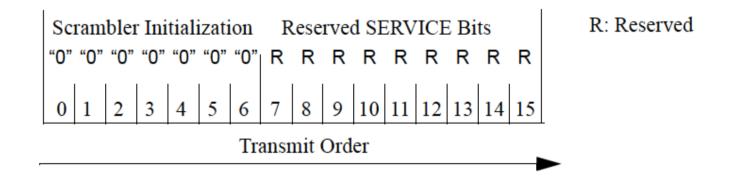

PLCP Preamble

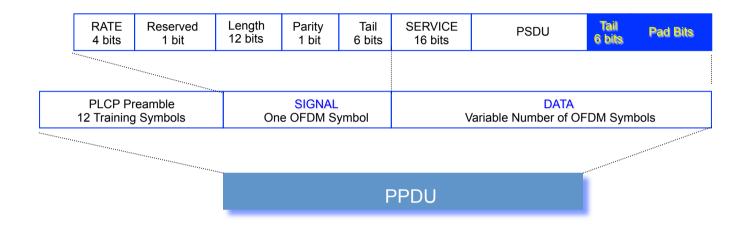
PLCP Rate/Length


- Data Rates (determined from TXVECTOR)
 - 1101 : 6Mbps (M)
 - IIII:9Mbps
 - 0101 : 12Mbps (M)
 - 0111 : 18Mbps
 - 1001 : 24Mbps (M)
 - 1011:36Mbps
 - 0001 : 48Mbps
 - 0011 : 54Mbps

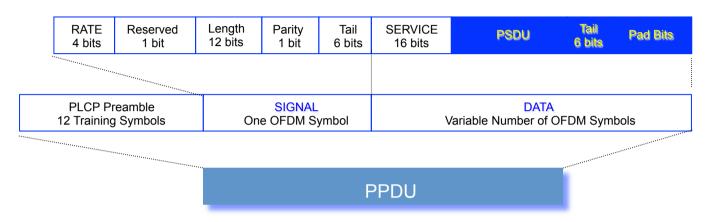
PLCP Rate/Length


- The PLCP LENGTH field shall be an unsigned 12-bit integer that indicates the number of octets in the PSDU that the MAC is currently requesting the PHY to transmit
- Used by the PHY to determine the number of octet transfers that will occur between the MAC and the PHY after receiving a request to start transmission


PLCP Tail Subfield


- 6 'zero' bit
- To make the length of SIGNAL field to be 24 bits (for the N_{DBPS}=24 in 6Mbps mode)
- To facilitate a reliable and timely detection of the RATE and LENGTH fields

PLCP Service



- Append 6 non-scrambled <u>tail bits</u> for PSDU to return the convolutional code to the "zero state"
- Add <u>pad bits</u> (with "zero" and at least 6 bits) such that the length of DATA field is a multiple of N_{DBPS}

PLCP DATA Encoding

- I. <u>Encode</u> data string with convolutional encoder (include punctured coding)
- **2.** <u>**Divide**</u> encoded bit string into groups of N_{CBPS} bits
- 3. Within each group, perform data **interleaving**
- 4. For each of the groups, <u>convert</u> bit string group into a complex number according to the modulation tables (see slides 7-10)
- 5. Divide the complex number string into groups of 48 complex numbers, each such group will be associated with one OFDM symbol
 - map to subcarriers -26~-22, -20~-8, -6~-1, 1~6, 8~20, 22~26
 - 4 subcarriers –21, -7, 7, 21 are used for pilot
 - subcarrier 0 is useless
- 6. Convert subcarriers to time domain using inverse Fast Fourier transform (IFFT)
- 7. Append OFDM symbols after SINGNAL and un-convert to RF freq.

IEEE 802.11a TxVector

Parameter	Associated primitive	Value
LENGTH	PHY-TXSTART.request (TXVECTOR)	1-4095
DATATRATE	PHY-TXSTART.request (TXVECTOR)	 6, 9, 12, 18, 24, 36, 48, and 54 Mb/s for 20 MHz channel spacing (Support of 6, 12, and 24 Mb/s data rates is mandatory.) 3, 4.5, 6, 9, 12, 18, 24, and 27 Mb/s for 10 MHz channel spacing (Support of 3, 6, and 12 Mb/s data rates is mandatory.) 1.5, 2.25, 3, 4.5, 6, 9, 12, and 13.5 Mb/s for 5 MHz channel spacing (Support of 1.5, 3, and 6 Mb/s data rates is mandatory.)
SERVICE	PHY-TXSTART.request (TXVECTOR)	Scrambler initialization; 7 null bits + 9 reserved null bits
TXPWR_LEVEL	PHY-TXSTART.request (TXVECTOR)	18
TIME_OF_ DEPARTURE_ REQUESTED	PHY-TXSTART.request (TXVECTOR)	False, true. When true, the MAC entity requests that the PHY PLCP entity measures and reports time of departure parameters corresponding to the time when the first frame energy is sent by the transmitting port; when false, the MAC entity requests that the PHY PLCP entity neither measures nor reports time of departure parameters.

IEEE 802.11a RxVector

Parameter	Associated primitive	Value			
LENGTH	PHY- RXSTART.indication	1–4095			
RSSI	PHY- RXSTART.indication (RXVECTOR)	0-RSSI maximum			
DATARATE	PHY-RXSTART.request (RXVECTOR)	6,9,12,18,24,36,48,and54 Mb/s for 20 MHz channel spacing (Support of 6, 12, and 24 Mb/s data rates is mandatory.)			
		3, 4.5, 6, 9, 12, 18, 24, and 27 Mb/s for 10 MHz channel spacing (Support of 3, 6, and 12 Mb/s data rates is mandatory.)			
		1.5, 2.25, 3, 4.5, 6, 9, 12, and 13.5 Mb/s for 5 MHz channel spacing (Support of 1.5, 3, and 6 Mb/s data rates is mandatory.)			
SERVICE	PHY-RXSTART.request (RXVECTOR)	Null			
RCPI (see NOTE)	PHY- RXSTART.indication (RXVECTOR) PHY-RXEND.indication (RXVECTOR)	0-255			
ANT_STATE (see NOTE)	PHY- RXSTART.indication (RXVECTOR) PHY-RXEND.indication (RXVECTOR)	0–255			
RX_START_OF_FRAM E_OFFSET	PHY- RXSTART.indication (RXVECTOR)	0 to 2^{32} -1. An estimate of the offset (in 10 ns units) from the point in time at which the start of the preamble corresponding to the incoming frame arrived at the receive antenna port to the point in time at which this primitive is issued to the MAC.			
NOTE-Parameter is present only when dot11RadioMeasurementActivated is true.					

Timing-related Parameters

Parameter	Value (20 MHz channel spacing)	Value (10 MHz channel spacing)	Value (5 MHz channel spacing)
N_{SD} : Number of data subcarriers	48	48	48
N _{SP} : Number of pilot subcarriers	4	4	4
N_{ST} : Number of subcarriers, total	$52 (N_{SD} + N_{SP})$	$52 (N_{SD} + N_{SP})$	$52 (N_{SD} + N_{SP})$
$\Delta_{\mathbf{F}}$: Subcarrier frequency spacing	0.3125 MHz (=20 MHz/64)	0.15625 MHz (= 10 MHz/64)	0.078125 MHz (= 5 MHz/64)
<i>T_{FFT}</i> : Inverse Fast Fourier Transform (IFFT) / Fast Fourier Transform (FFT) period	$3.2 \ \mu s \ (1/\Delta_F)$	6.4 μ s (1/ Δ_F)	12.8 μs (1/ Δ_F)
$T_{PREAMBLE}$: PLCP preamble duration	16 $\mu s (T_{SHORT} + T_{LONG})$	32 $\mu s (T_{SHORT} + T_{LONG})$	64 μ s ($T_{SHORT} + T_{LONG}$)
<i>T_{SIGNAL}</i> : Duration of the SIGNAL BPSK-OFDM symbol	4.0 µs $(T_{GI} + T_{FFT})$	8.0 µs $(T_{GI} + T_{FFT})$	16.0 μs (<i>T_{GI}</i> + <i>T_{FFT}</i>)
T _{GI} : GI duration	0.8 μs (<i>T_{FFT}</i> /4)	1.6 μs (<i>T_{FFT}</i> /4)	3.2 μs (<i>T_{FFT}</i> /4)
<i>T_{GD}</i> : Training symbol GI duration	1.6 μs (<i>T_{FFT}</i> /2)	3.2 μs (<i>T_{FFT}</i> /2)	6.4 μs (<i>T_{FFT}</i> /2)
T _{SYM} : Symbol interval	$4 \ \mu \text{s} \ (T_{GI} + T_{FFT})$	8 μs (<i>T_{GI}</i> + <i>T_{FFT}</i>)	16 μs (<i>T_{GI}</i> + <i>T_{FFT}</i>)
<i>T_{SHORT}</i> : Short training sequence duration	8 µs (10 × T_{FFT} /4)	16 µs (10 × T_{FFT} /4)	32 µs (10 × T_{FFT} /4)
<i>T_{LONG}</i> : Long training sequence duration	8 µs $(T_{GD} + 2 \times T_{FFT})$	16 μ s (T_{GD} + 2 \times T_{FFT})	$32 \ \mu \text{s} \ (T_{GI2} + 2 \times T_{FFT})$