

1

# **Mobile Networking**

Mohammad Hossein Manshaei <u>manshaei@gmail.com</u> 1393



Processing and Transmitter and Receiver, Wireless Channel, Throughput, Path loss, ...

## FUNDAMENTALS OF WIRELESS TRANSMISSION

### Contents

- Processing at the Transmitter
- The Wireless Channel
- Processing at the Receiver
- Noise
- Mobile Radio Propagation
- Throughput Limit for a Wireless Link

From Application to Physical Layer

### PROCESSING AT THE TRANSMITTER

## **Our Basic Model**

- Alice and Bob communicate using a voice-over-IP application
- Their computers are connected by a wireless link
- There are three main phases for the signal:
  - Processing at the Transmitter
  - Propagation through wireless channel
  - Processing at the receiver



## Wireless Communication Link: A Simplified Model



#### I. Digital Representation of Information

- − Analog audio signal → Analog electrical signal
- − Signal sampling → Binary bits → Symbols



#### 2. Packetization

- The bits obtained after source coding are divided into chunks of consecutive bits
- E.g., each 20 ms of speech to one chunk 
   50
   packets each second

#### 3. Encapsulation

 Add application layer header (e.g., voip header), make transport layer segment (e.g., UDP), make datagram (i.e., adding IP header), and make frame



#### 4. Error Control Codes

 Add redundancy in the transmitted signal (e.g., Checksum in TCP, Checksum for IP header, CRC in MAC header, and convolutional code in 802.11a PHY layer)



#### 5. Modulation

- The process by which the packet to be transmitted is encoded on a "carrier".



#### Contents

- Processing at the Transmitter
- The Wireless Channel
- Processing at the Receiver
- Noise
- Mobile Radio Propagation
- Throughput Limit for a Wireless Link

How to model?

#### **THE WIRELESS CHANNEL**

## Wireless Channel

- The received signal is different from the transmitted signal:
  - **I. Channel Characteristics** (e.g., signal attenuation, signal reflection, scattering, ...)
  - **2. Noise** (e.g., thermal noise by communication hardware )
  - 3. Interference (e.g., simultaneous transmissions)

#### Wireless Channel: A Simple Model

$$r(t) = \sum_{i} a_{i} x(t - \tau_{i}) + n(t) + i(t)$$

- Path i having a delay  $\tau_i$  and attenuation factor  $a_i$
- *i(t)* is the composite of the interfering signal at receiver at the time *t*
- n(t) denotes the noise at time t



#### Contents

- Processing at the Transmitter
- The Wireless Channel
- Processing at the Receiver
- Noise
- Mobile Radio Propagation
- Throughput Limit for a Wireless Link

## **Processing at the Receiver**

- **Demodulation** is performed, to attempt to recover the transmitted symbols
- Error Detection/Correction using error control codes used in the channel coding stage
- Error checks at MAC, IP and Transport Layer
- The *application* layer will translate the received samples of Alice's voice into an audible signal

#### Contents

- Processing at the Transmitter
- The Wireless Channel
- Processing at the Receiver
- Noise
- Mobile Radio Propagation
- Throughput Limit for a Wireless Link

Brief Review!



# **Categories of Noise**

- Thermal Noise
- Intermodulation noise
- Crosstalk
- Impulse Noise

# **Noise Terminology**

- Intermodulation noise: occurs if signals with different frequencies share the same medium
  - Interference caused by a signal produced at a frequency that is the sum or difference of original frequencies
- **Crosstalk:** unwanted coupling between signal paths
- Impulse noise: irregular pulses or noise spikes
  - Short duration and of relatively high amplitude
  - Caused by external electromagnetic disturbances, or faults and flaws in the communications system

## **Thermal Noise**

- Also called white noise
- Due to agitation of electrons
- Present in all electronic devices and transmission media
- Cannot be eliminated
- Function of temperature
- Particularly significant for satellite communication

### **Thermal Noise**

 Amount of thermal noise to be found in a bandwidth of IHz in any device or conductor is:

$$N_0 = \mathbf{k}T(\mathbf{W}/\mathbf{Hz})$$

- $N_0$  = noise power density in watts per I Hz of bandwidth
- $k = Boltzmann's constant = 1.3803 \times 10^{-23} J/K$
- *T* = temperature, in kelvins (absolute temperature)

## Additive White Gaussian Noise Process (AWGN)

- Additive: Noise adds to the signal
- Process: The noise n(t) at each time t is a random variable
- Gaussian: n(t) has a Gaussian distribution with zero mean.
  - It is customary to denote the variance of this Gaussian distribution as  $N_0/2$

$$p(\mathcal{N}=n) = \frac{1}{\sqrt{\pi N_0}} e^{-\frac{n^2}{N_0}}_{_{24}}$$

## Additive White Gaussian Noise Process (AWGN)

- White: The power spectral density for the noise is "flat" or constant for all frequencies.
- If the bandwidth for the signal of interest is W, then the noise introduced over that bandwidth will have power:  $N = N_0 W$  (Watts)
- E.g., W is 10 MHz and N₀ is 8x10<sup>-21</sup> W/Hz
   → Noise power equal to 8x10<sup>-14</sup> Watts or -131dBW or -101dBm

#### Contents

- Processing at the Transmitter
- The Wireless Channel
- Processing at the Receiver
- Noise
- Mobile Radio Propagation
- Throughput Limit for a Wireless Link

Propagations, Path Loss, Fading, Doppler, ...

#### **MOBILE RADIO PROPAGATION**

### **Type of Radio Waves**



## **Ground Wave Propagation**



# **Ground Wave Propagation**

- Follows contour of the earth
  - The electromagnetic wave induces a current in the earth's surface 
     the waveform tilts downwards
- Can Propagate considerable distances
- Frequencies up to 2 MHz
- Example
  - AM radio

## **Sky Wave Propagation**



# **Sky Wave Propagation**

- Signal reflected from ionized layer of atmosphere back down to earth
- Signal can travel a number of hops, back and forth between ionosphere and earth's surface
- Examples
  - Amateur radio

## **Radio Frequency Bands**

| <b>Classification Band</b> | Initials | Frequency Range                         | <b>Propagation Mode</b> |
|----------------------------|----------|-----------------------------------------|-------------------------|
| Extremely low              | ELF      | <300 Hz ~3 kHz                          | Ground wave             |
| Infra low                  | ILF      | 300 Hz ~3 kHz                           | Ground wave             |
| Very low                   | VLF      | $3 \mathrm{kHz} \sim 30 \mathrm{kHz}$   | Ground wave             |
| Low                        | LF       | $30 \mathrm{kHz} \sim 300 \mathrm{kHz}$ | Ground wave             |
| Medium                     | MF       | $300 \mathrm{kHz} \sim 3 \mathrm{MHz}$  | Ground/sky wave         |
| High                       | HF       | $3 \text{ MHz} \sim 30 \text{ MHz}$     | Sky wave                |
| Very high                  | VHF      | 30 MHz ~300 MHz                         | Space wave              |
| Ultra high                 | UHF      | $300\mathrm{MHz}{\sim}3\mathrm{GHz}$    | Space wave              |
| Super high                 | SHF      | 3 GHz ~30 GHz                           | Space wave              |
| Extremely high             | EHF      | 30 GHz ~300 GHz                         | Space wave              |
| Tremendously high          | THF      | 300GHz ~3000 GHz                        | Space wave              |

## **Line-of-Sight Propagation**



# Line-of-Sight Propagation

- Required above 30 MHz
- Transmitting and receiving antennas must be within line of sight
  - Satellite communication signal above
     30 MHz not reflected by ionosphere
  - -Ground communication antennas within effective line of site due to refraction

## Radio Line-of-Sight

- Optical line of sight  $d = 3.57\sqrt{h}$
- Effective, or radio, line of sight

$$d = 3.57\sqrt{\mathrm{K}h}$$

- d = distance between antenna and horizon (km)
- *h* = antenna height (m)
- K = adjustment factor to account for refraction, rule of thumb K = 4/3


## Radio Line-of-Sight

 Maximum distance between two antennas for LOS propagation:

$$3.57\left(\sqrt{Kh_1} + \sqrt{Kh_2}\right)$$

- $h_1$  = height of antenna one
- $h_2$  = height of antenna two

# **LOS Propagation Mechanisms**





**Reflection**: Impinges on an object that is larger as compared to its wavelength (for example, the surface of the earth, tall buildings, large walls).

**Diffraction**: Obstructed by a surface with sharp irregular edges

**Scattering**: Scattered into several weaker outgoing signals

### Reflection, Diffraction, and Scattering



### **Free Space Propagation**

• Received power at distance d, with the effective area covered by the transmitter  $(A_e)$ , and  $G_t$  the transmission antenna gain:

$$P_r = \frac{A_e G_t P_t}{4\pi d^2}$$

• Relation between  $A_e$  (effective area covered) and receiving antenna gain ( $\lambda$  is the wavelength of the electromagnetic wave):  $G_r = \frac{4\pi A_e}{\lambda^2}$ 

### **Free Space Propagation**

• The free space path loss  $L_f$  is then (i.e., amount of power lost in the space):



 $L_f(dB) = 32.45 + 20 \log_{10} f_c (MHz) + 20 \log_{10} d (km)$ 

#### **Free Space Propagation**



## Land Propagation

- The signal reaches the destination using many different paths, because of diffraction and reflection from various objects along the path of propagation
- Received signal power:  $P_r = \frac{G_t G_r P_t}{L}$
- *L* is the propagation loss in channel:

$$L = L_P L_S L_F$$

#### Land Propagation $L=L_PL_SL_F$



#### Path Loss

- Simple definition:  $L_P = Ad^{\alpha}$
- "A" and " $\alpha$ " are propagation constant
- " $\alpha$ " is about 3~4 in typical urban area

#### Path Loss Example: Urban Area

 $L_{PU}(dB) = 69.55 + 26.16 \log_{10} f_c(MHz) - 13.82 \log_{10} h_b(m) - \alpha [h_m(m)] + [44.9 - 6.55 \log_{10} h_b(m)] \log_{10} d (km)$ 

Medium and Small Cities: An Example

$$\alpha [h_m(m)] = \begin{cases} 8.29 [\log_{10} 1.54h_m(m)]^2 - 1.1, & f_c < 300 \text{ MHz} \\ 3.2 [\log_{10} 11.75h_m(m)]^2 - 4.97, & f_c > 300 \text{ MHz} \end{cases}$$

#### Path Loss Example: Urban Area Medium and Small Cities



#### Slow Fading (Log-normal fading or Shadowing)

• Long term spatial and temporal variations over distances large enough to produce gross variation in the overall path between the transmitter and receiver

#### Slow Fading (Log-normal fading or Shadowing)

• Experiments have indicated that slow fading obeys the log-normal distribution (*M* is true received signal level)



### **Fast Fading**

• **Scattering** of the signal by object **near** transmitter

#### Or

• The **rapid fluctuations** in the spatial and temporal characteristics caused by local multipath are known as fast fading

### Fast Fading:

#### **Receiver Far from the Transmitter**

 Rayleigh Distribution (No Direct Radio Wave): Probability distribution of signal amplitude of every path is a Gaussian distribution, and their phase distribution has a uniform distribution within (0, 2π) radians.

$$p(r) = \frac{r}{\sigma^2} e^{-\frac{r^2}{2\sigma^2}}, \qquad r > 0$$



#### Fast Fading: Receiver Close to the Transmitter

• Rician Distribution (With Direct Wave):



### Nakagami Model: A Generalized Model

$$p(r) = \frac{2r^{2m-1}}{\Gamma(m)} \left(\frac{m}{\Omega}\right)^m e^{-\frac{mr^2}{\Omega}} \quad \text{for } r \ge 0,$$

• *m* is fading factor:

$$-m=1$$
  $\rightarrow$  Rayleigh Distribution

 $-m \rightarrow \infty \rightarrow No$  fading

 Rician distribution can be approximated by Nakagami

$$m = \frac{(K+1)^2}{2K+1}$$
 Where K is the rician factor:  $K(=\frac{\beta}{2\sigma})$ 

### Flat and Selective Fading

- Flat fading: All frequency components of the received signal fluctuate in the same proportions simultaneously
- Selective fading: Affects unequally the different spectral components of a radio signal

#### Slow and Fast Fading in an Urban Mobile Environment



56

# **Fading Channel Model**



 $K = \frac{\text{Power in the dominant path}}{\text{Power in the scattered paths}}$ 

## Signal-to-Noise Ratio

- Ratio of the power in a signal to the power contained in the noise that's present at a particular point in the transmission
- Typically measured at a receiver
- Signal-to-noise ratio (SNR, or S/N)

$$(SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$$

- A high SNR means a high-quality signal, low number of required intermediate repeaters
- SNR sets upper bound on achievable data rate



 Ratio of signal energy per bit to noise power density per Hertz

$$\frac{E_b}{N_0} = \frac{S/R}{N_0} = \frac{S}{kTR}$$

where S is the signal power, R the bitrate, k Boltzmann's constant and T the temperature

- The bit error rate for digital data is a function of  $E_b/N_0$ 
  - Given a value for  $E_b/N_0$  to achieve a desired error rate, parameters of this formula can be selected
  - As bit rate R increases, transmitted signal power must increase to maintain required  $E_b/N_0$

# SNR vs E<sub>b</sub>/N<sub>0</sub>

$$SNR = \frac{Signal \ Power}{Noise \ Power} = \frac{R_b E_b}{N_0 W} = \frac{R_s E_s}{N_0 W}$$

 $R_b$  and  $R_s$  is the maximum bit rate and symbol rate of the modulation scheme respectively,  $E_b$  and  $E_s$  is the energy of bit and symbol respectively

## **BER vs E<sub>b</sub>/N<sub>0</sub>: A General Shape**



 $(E_b/N_0)$  (dB)

### Theoretical BER for various Fading Condition



 $K = \frac{\text{Power in the dominant path}}{\text{Power in the scattered paths}}$ 

K=0 : Rayleigh K=∞: Additive White Gaussian Noise

62

### BER vs EbN0 AWGN and Rayleigh



### **AWGN vs Rayleigh**



AWGN

Rayleigh (L=I)

### **Doppler Effect**

• The frequency of the received signal will not be the same as the source

$$f_r = f_c - f_d$$







## **Delay Spread**

- Each path has a different path length, the time of arrival for each path is different  $\rightarrow$  ISI
- Exponential Model:



# InterSymbol Interference (ISI)

Caused by time-delayed multipath signals



#### Antenna

- An antenna is an electrical conductor or system of conductors
  - Transmission: radiates electromagnetic energy into space
  - Reception: collects electromagnetic energy from space
- In two-way communication, the same antenna can be used for transmission and reception

### **Radiation Patterns**

- Radiation pattern
  - Graphical representation of radiation properties of an antenna
  - Depicted as two-dimensional cross section
- **Beam width** (or half-power beam width)
  - Measure of directivity of antenna (the angle within which the power radiated by the antenna is at least half of what it is in the most preferred direction)

#### Reception pattern

- Receiving antenna's equivalent to radiation pattern

## **Types of Antennas**

• Isotropic antenna (idealized)

- Radiates power equally in all directions



## **Types of Antennas**

#### • Dipole antennas

- Half-wave dipole antenna (or Hertz antenna)
- *Quarter-wave* vertical antenna (or Marconi antenna)



**Directional Antenna** 

### **Types of Antennas**

• Parabolic Reflective Antenna


# Antenna Gain

- Antenna gain
  - Measure of the directionality of an antenna
  - Power output, in a particular direction, compared to that produced in any direction by a perfect omnidirectional antenna (isotropic antenna)

#### • Effective area

- Related to physical size and shape of antenna

### Contents

- Processing at the Transmitter
- The Wireless Channel
- Processing at the Receiver
- Noise
- Mobile Radio Propagation
- Throughput Limit for a Wireless Link

Capacity, bandwidth, and Throughput

### **THROUGHPUT LIMITS**

# **Capacity: Throughput Limit**

- Assume an AWGN channel with bandwidth W
- P: received signal power
- Assume I = 0
- Shannon best available rate of reliable transmission:

$$C = W \log_2 \left( 1 + \frac{P}{N_0 W} \right) \qquad \text{bits/second}$$

# **Capacity: Throughput Limit**

• Assume I is the total interference power at the receiver and receivers treats it similar to noise:

$$C = W \log_2 \left(1 + SINR\right)$$
 in bits/second

# Bandwidth, Capacity, and Throughput

- Bandwidth: The amount of spectrum occupied by a signal transmitted on a channel, in units of Hertz (Hz).
- Capacity: The maximum possible rate of reliable information delivery.
- Transmission rate: The rate at which information is transmitted on the channel.
- Throughput: is the rate at which data is reliably delivered between a pair of peers.
- Capacity, transmission rate and throughput can all be expressed in the units of bits-per-second (bps).

The goal is to design the system such that the achieved throughput approaches the capacity.