
Algorithms	

Slides derived from those available on the web site of the book:
Computer Science: An Overview, 11th Edition, by J. Glenn Brookshear

Copyright © 2012 Pearson Education, Inc.

Algorithms

•  The Concept of an Algorithm
•  Algorithm Representation
•  Algorithm Discovery
•  Iterative Structures
•  Recursive Structures
•  Efficiency and Correctness

2

Informal Definition

•  Our examples:
– Converting numerical representations from

one form to another
– Detect and correct errors in data (Data

Storage)
– Control time sharing (Network)
– Machine Cycle (CPU)

•  Every activity of the human mind, is the
result of algorithm execution

3

Definition of Algorithm

 An algorithm is an ordered set of
unambiguous, executable steps
that defines a terminating process.

4

Definition of Algorithm (Cont.)

•  Parallel Algorithms (e.g., Flip-Flop)
•  Executable steps:

– We cannot execute this: “Make a list of all
positive integer”

•  Algorithm vs Representation
•  Program vs Process of Algorithm

5

Algorithms

•  The Concept of an Algorithm
•  Algorithm Representation
•  Algorithm Discovery
•  Iterative Structures
•  Recursive Structures
•  Efficiency and Correctness

6

Algorithm Representation

•  Requires well-defined primitives
•  A collection of primitives constitutes a

programming language.

7

Folding a bird from a square piece of
paper

8

Origami primitives

9

Primitives

1.  Syntax: The primitive’s symbolic representation

2.  Semantic: Meaning of the primitives

10

Pseudocode Primitives

•  Assignment
 name ß expression

e.g., RemainingFunds ß CheckingBalance + SavingBalance

•  Conditional selection
 if condition then (action)

 else (action)

11

Pseudocode Primitives (continued)

•  Repeated execution
 while condition do activity
e.g., while (tickets remain to be sold) do (sell a ticket)

•  Procedure
 procedure name (generic names)

12

The procedure Greetings in
pseudocode

Notes: 1. Indentation often enhances the readability
 2. Naming items in programs (Pascal vs camel casing)
 3. Use of (end if) and (end while)

13

Algorithms

•  The Concept of an Algorithm
•  Algorithm Representation
•  Algorithm Discovery
•  Iterative Structures
•  Recursive Structures
•  Efficiency and Correctness

14

15

Solve
Problem

Make
Algorithm

The Art of Solving Problem

The ability to solve
problems remains more of

an artistic skill to be
developed than a precise

science to be learned
16

Polya’s (1945) Problem Solving Steps

1. Understand the problem.
2. Devise a plan for solving the problem.
3. Carry out the plan.
4. Evaluate the solution for accuracy and its
potential as a tool for solving other problems.

17

Ages of Children Problem

•  Person A is charged with the task of determining
the ages of B’s three children.
–  B tells A that the product of the children’s ages is 36.
–  A replies that another clue is required.
–  B tells A the sum of the children’s ages.
–  A replies that another clue is needed.
–  B tells A that the oldest child plays the piano.
–  A tells B the ages of the three children.

•  How old are the three children?

18

Ages of Children Problem (Cont.)

We had not understood the problem (Phase 1)
Before start solving the problem (Phase 3)

19

Henri Poincare [Psychological
Society, Paris]

Experience of realizing the
solution to a problem he had
worked on after he had set it

aside and begun other projects

20

It is too difficult (almost impossible)
to develop a systematic approach

to problem solving,
considering the mentioned irregularities

Let’s get a foot in the door

21

An example

22

Getting a Foot in the Door

•  Try working the problem backwards
•  Solve an easier related problem

– Relax some of the problem constraints
– Solve pieces of the problem first (bottom up

methodology)
•  Stepwise refinement: Divide the problem into

smaller problems (top-down methodology)

23

Algorithms

•  The Concept of an Algorithm
•  Algorithm Representation
•  Algorithm Discovery
•  Iterative Structures
•  Recursive Structures
•  Efficiency and Correctness

24

Iterative Structures

•  Pretest loop:
 while (condition) do
 (loop body)
•  Posttest loop:
 repeat (loop body)
 until(condition)

25

The sequential search algorithm in
pseudocode

Note: List is already sorted
26

Components of repetitive control

27

The while loop structure

28

The repeat loop structure

29

Sorting the list Fred, Alex, Diana, Byron,
and Carol alphabetically

30

The insertion sort algorithm expressed
in pseudocode

31

Algorithms

•  The Concept of an Algorithm
•  Algorithm Representation
•  Algorithm Discovery
•  Iterative Structures
•  Recursive Structures
•  Efficiency and Correctness

32

Recursion

•  The execution of a procedure leads to
another execution of the procedure.

•  Multiple activations of the procedure are
formed, all but one of which are waiting for
other activations to complete.

33

Applying our strategy to search a list for
the entry John

34

A first draft of the binary search
technique

35

The binary search algorithm in
pseudocode

36

Search for “Bill”

37

Search for “David”

38

Search for “David” (Cont.)

39

Algorithms

•  The Concept of an Algorithm
•  Algorithm Representation
•  Algorithm Discovery
•  Iterative Structures
•  Recursive Structures
•  Efficiency and Correctness

40

Algorithm Efficiency

•  Measured as number of instructions
executed

•  Big theta notation: Used to represent
efficiency classes
– Example: Insertion sort is in Θ(n2)

•  Best, worst, and average case analysis

41

•  Search one name in a list of 30000
students
– Sequential Search

•  Check 15000 records per search
•  Time needed: 10ms * 15000 = 2.5 min

– Binary Search
•  30000 à 15000 à 7500 à 3750 à 1875 à …
•  At most 15 entries from a list of 30000
•  Time needed: 10ms * 15 = 150 ms

42

Algorithm Efficiency (Example)

Applying the insertion sort in a worst-
case situation

43

Maximum number of comparisons:
1+2+3 … + (n-1) = ½ (n2-n)

Graph of the worst-case analysis of the
insertion sort algorithm

44

Graph of the worst-case analysis of the
binary search algorithm Θ(lg(n))

45

Correctness Verification
Example: Chain Separating Problem

•  A traveler has a gold chain of seven links.
•  He must stay at an isolated hotel for seven

nights.
•  The rent each night consists of one link from the

chain.
•  What is the fewest number of links that must be

cut so that the traveler can pay the hotel one link
of the chain each morning without paying for
lodging in advance?

46

Separating the chain using only
three cuts

47

Solving the problem with only one
cut

48

Software Verification

•  Proof of correctness
– Assertions

• Preconditions
• Loop invariants

•  Testing

49

