

Information Technology Engineering

Mohammad Hossein Manshaei <u>manshaei@gmail.com</u> 1393

Voice and Video over IP

MULTIMEDIA NETWORKING

Slides derived from those available on the Web site of the book "Computer Networking", by Kurose and Ross, PEARSON

Multimedia networking: outline

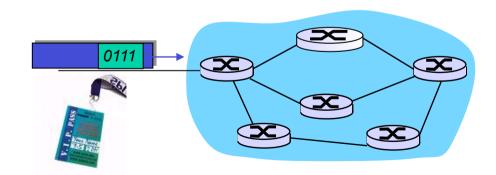
- 7.1 multimedia networking applications
- 7.2 streaming stored video
- 7.3 voice-over-IP
- 7.4 protocols for real-time conversational applications: RTP, SIP
- 7.5 network support for multimedia

Network support for multimedia

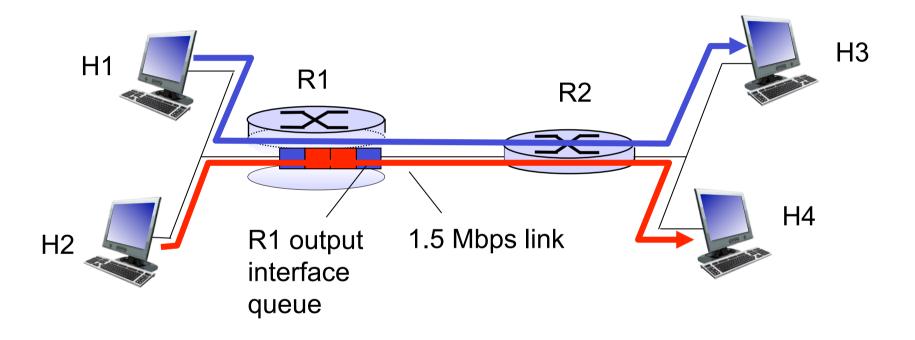
Approach	Unit of Allocation	Guarantee	Deployment to date	Complexity	Mechanisms
Making the best of best- effort service	All traffic treated equally	None, or soft	everywhere	minimal	Application-layer support, CDN, over-provisioning
Differential QoS	Classes of Flows	None, or Soft	some	medium	Policing, Scheduling
Guaranteed QoS	Individual Flows	Soft or hard, once a flow is admitted	little	high	Policing, Scheduling, call admission and signaling

Dimensioning best effort networks

- Approach: deploy enough link capacity so that congestion doesn't occur, multimedia traffic flows without delay or loss
 - low complexity of network mechanisms (use current "best effort" network)
 - high bandwidth costs
- Challenges:
 - estimating network traffic demand (bandwidth provisioning): needed to determine how much bandwidth is "enough" (for that much traffic)
 - network dimensioning: how to design a network topology (where to place routers, how to interconnect routers with links, and what capacity to assign to links) to achieve a given level of end-to-end performance

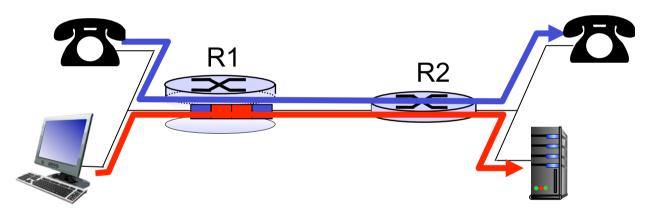

Dimensioning best effort networks

Find answer to following issues:


- Models of traffic demand between network end points
 - Call level and packet level
- Well-defined performance requirements
 - E.g., probability that the end-to-end delay of the packet is greater than a maximum tolerable delay be less than some small value
- Models to predict end-to-end performance for a given workload model, and techniques to find a minimal cost bandwidth allocation that will result in all user requirements being met

Providing multiple classes of service

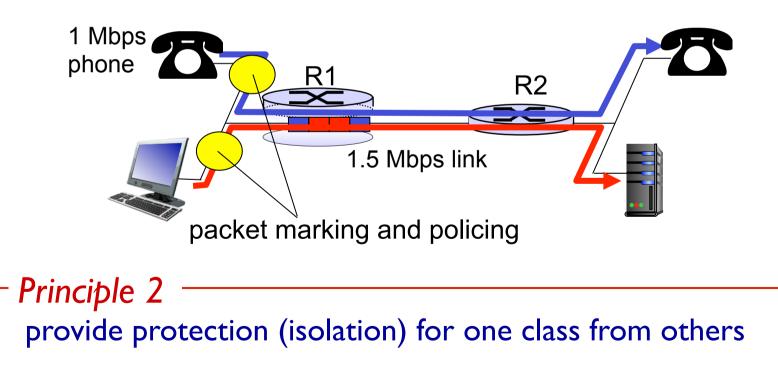
- Thus far: making the best of best effort service
 - one-size fits all service model
- Alternative: multiple classes of service
 - partition traffic into classes
 - network treats different classes of traffic differently (analogy: VIP service versus regular service)
- Granularity: differential service among multiple classes, not among individual connections
- history: ToS bits



Multiple classes of service: scenario

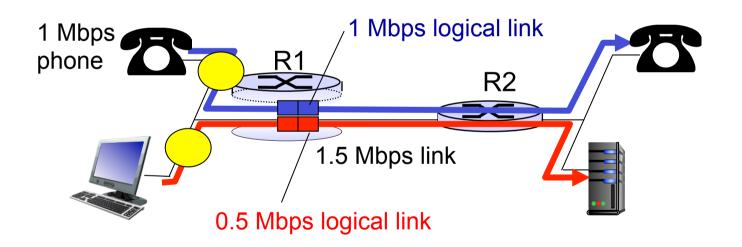
Scenario I: mixed HTTP and VoIP

- example: IMbps VoIP, HTTP share I.5 Mbps link.
 - HTTP bursts can congest router, cause audio loss
 - want to give priority to audio over HTTP



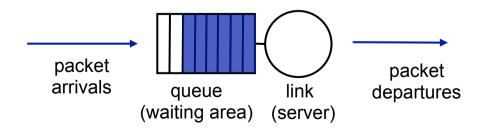
– Principle I

packet marking needed for router to distinguish between different classes; and new router policy to treat packets accordingly

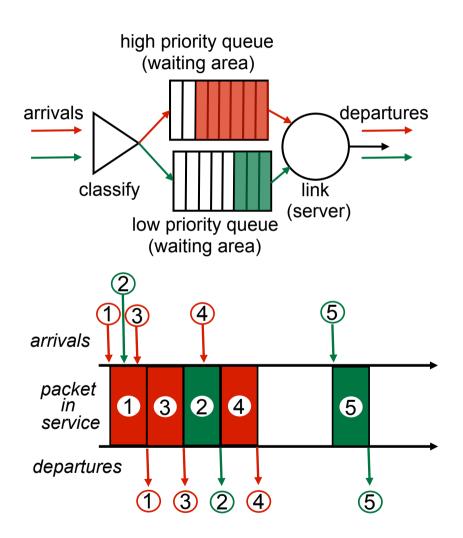

Principles for QOS guarantees (more)

- What if applications misbehave (VoIP sends higher than declared rate)
 - policing: force source adherence to bandwidth allocations
- I. marking, policing at network edge

Principles for QOS guarantees (more)

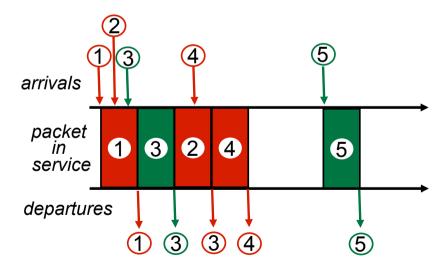

2. Allocating fixed (non-sharable) bandwidth to flow: inefficient use of bandwidth if flow doesn't use its allocation

Principle 3
 While providing isolation, it is desirable to use resources as efficiently as possible


Scheduling and policing mechanisms

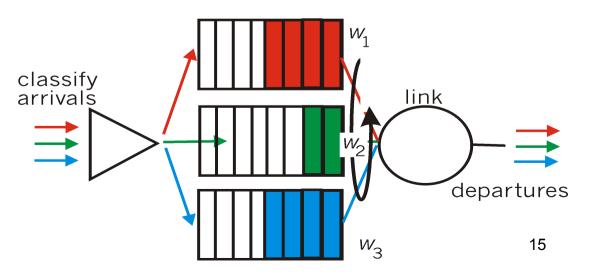
- Scheduling: choose next packet to send on link
- FIFO (first in first out) scheduling: send in order of arrival to queue
 - real-world example?
 - Packet-Discarding-Policy: if packet arrives to full queue: who to discard?
 - *tail drop*: drop arriving packet
 - *priority*: drop/remove on priority basis
 - *random*: drop/remove randomly

Scheduling policies: priority


- Priority scheduling: send highest priority queued packet
- multiple *classes*, with different priorities
 - class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc.
 - real world example?

Scheduling policies: still more

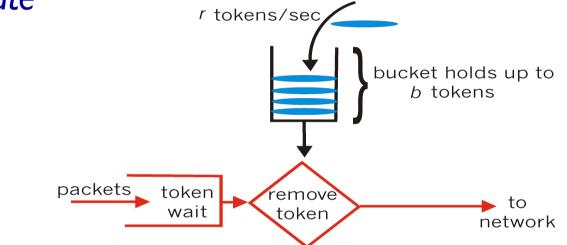
Round Robin (RR) scheduling:


- multiple classes
- cyclically scan class queues, sending one complete packet from each class (if available)
- real world example?

Scheduling policies: still more

Weighted Fair Queuing (WFQ):

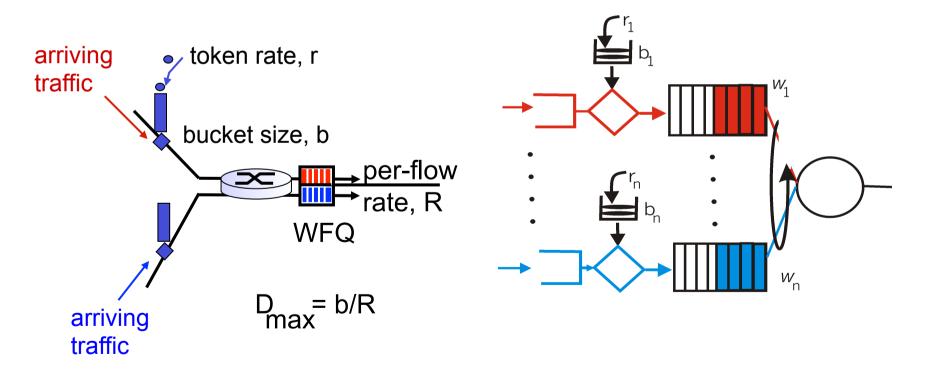
- generalized Round Robin
- each class gets weighted amount of service in each cycle
- real-world example?
- * Class *i* will then be guaranteed to receive a fraction of service equal to $w_i/(\Sigma w_i)$


Policing mechanisms

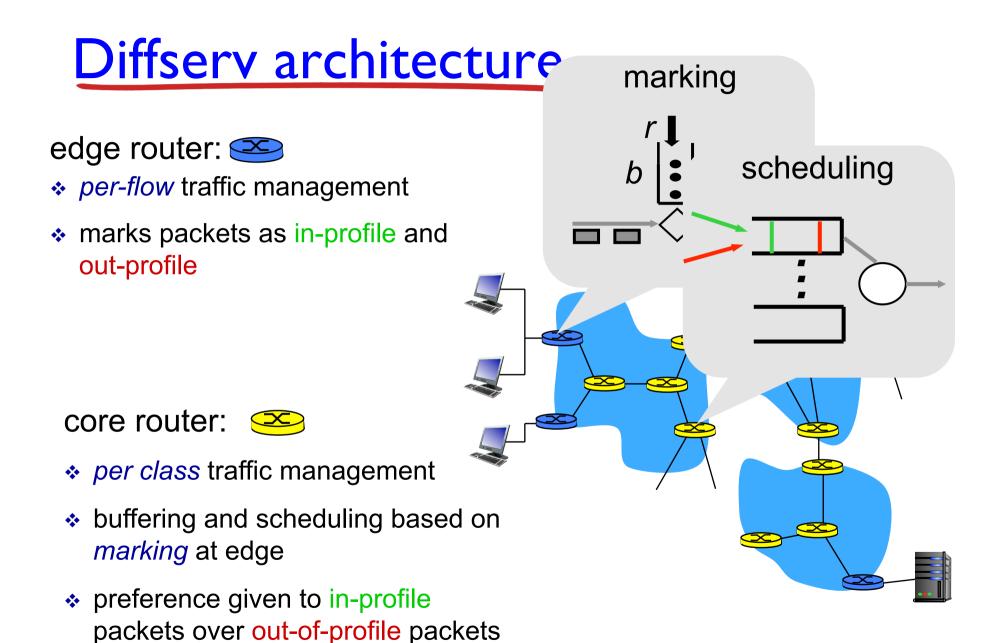
goal: limit traffic to not exceed declared parameters Three common-used criteria:

- (long term) average rate: how many pkts can be sent per unit time (in the long run)
 - crucial question: what is the interval length: 100 packets per sec or 6000 packets per min have same average!
- * peak rate: e.g., 6,000 packets per minute, while limiting the flow's peak rate to 1,500 packets per second
- (max.) burst size: max number of pkts sent consecutively (with no intervening idle)

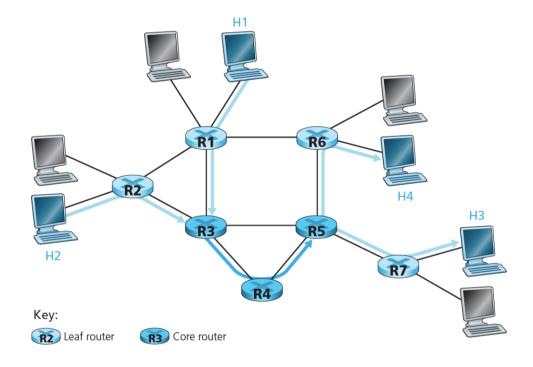
Policing mechanisms: implementation


Token bucket: limit input to specified burst size and average rate

- bucket can hold b tokens
- tokens generated at rate r token/sec unless bucket full
- over interval of length t: number of packets admitted less than or equal to (r t + b)


Policing and QoS guarantees

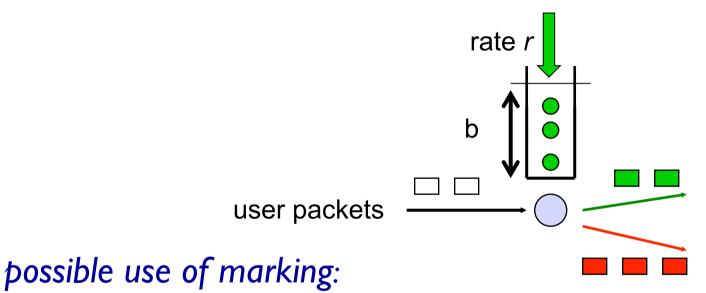
Token bucket, WFQ combine to provide guaranteed upper bound on delay, i.e., QoS guarantee!



Differentiated Services [RFC 2475]

- Want "qualitative" service classes
 - "behaves like a wire"
 - relative service distinction: Platinum, Gold, Silver
- Scalability: simple functions in network core, relatively complex functions at edge routers (or hosts)
 - signaling, maintaining per-flow router state difficult with large number of flows
- Don't define service classes, provide functional components to build service classes

Diffserv: An Example



- Packets being sent from HI to H3 might be marked at RI
- Packets being sent from H2 to H4 might be marked at R2

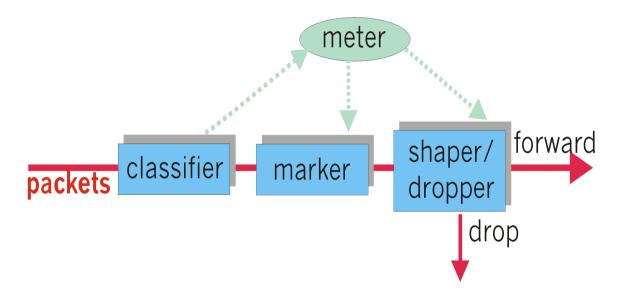
Edge-router packet marking

profile: pre-negotiated rate r, bucket size b

packet marking at edge based on per-flow profile

- class-based marking: packets of different classes marked differently
- intra-class marking: conforming portion of flow marked differently than non-conforming one

Diffserv packet marking: details


- Packet is marked in the Type of Service (TOS) in IPv4, and Traffic Class in IPv6
- 6 bits used for Differentiated Service Code Point (DSCP)
 - determine PHB that the packet will receive
 - 2 bits currently unused

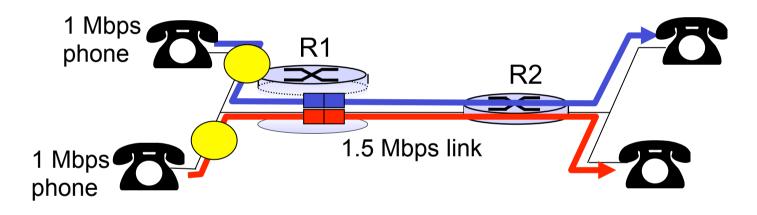
Classification, Conditioning

may be desirable to limit traffic injection rate of some class:

- suser declares traffic profile (e.g., rate, burst size)
- traffic metered, shaped if non-conforming

Forwarding Per-hop Behavior (PHB)

- PHB result in a different observable (measurable) forwarding performance behavior
- PHB does not specify what mechanisms to use to ensure required PHB performance behavior
- examples:
 - class A gets x% of outgoing link bandwidth over time intervals of a specified length
 - class A packets leave first before packets from class B


Forwarding PHB

PHBs proposed:

- expedited forwarding: pkt departure rate of a class equals or exceeds specified rate
 - logical link with a minimum guaranteed rate
- assured forwarding: 4 classes of traffic
 is a second classes
 is
 - each guaranteed minimum amount of bandwidth
 - each with three drop preference partitions

Per-connection QOS guarantees

 basic fact of life: can not support traffic demands beyond link capacity

— Principle 4 call admission: flow declares its needs, network may block call (e.g., busy signal) if it cannot meet needs

QoS Guarantee Scenario

resource reservation

- call setup, signaling (RSVP)
- traffic, QoS declaration

 QoS-sensitive scheduling (e.g., WFQ)

IETF Integrated Services

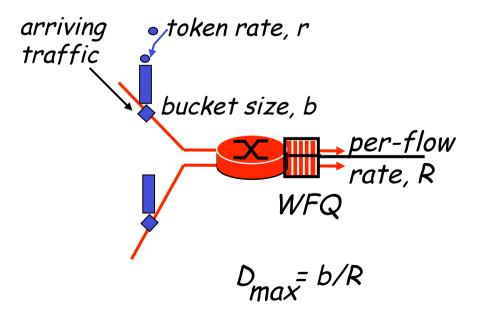
- architecture for providing QOS guarantees in IP networks for individual application sessions
- resource reservation: routers maintain state info (a la VC) of allocated resources, QoS req's
- * admit/deny new call setup requests:

<u>Question:</u> can newly arriving flow be admitted with performance guarantees while not violated QoS guarantees made to already admitted flows?

Call Admission

Arriving session must :

- declare its QOS requirement
 - R-spec: defines the QOS being requested
- characterize traffic it will send into network
 - T-spec: defines traffic characteristics
- signaling protocol: needed to carry R-spec and Tspec to routers (where reservation is required)
 - RSVP


Intserv QoS: Service models [rfc2211, rfc 2212]

Guaranteed service:

- worst case traffic arrival: leakybucket-policed source
- simple (mathematically provable)
 bound on delay [Parekh 1992, Cruz 1988]

Controlled load service:

"a quality of service closely approximating the QoS that same flow would receive from an unloaded network element."

Signaling in the Internet

connectionless (stateless) forwarding by IP routers

no network + best effort = signaling protocols design

New requirement: reserve resources along end-toend path (end system, routers) for QoS for multimedia applications

RSVP: Resource Reservation Protocol [RFC 2205]

- " ... allow users to communicate requirements to network in robust and efficient way." i.e., signaling !
- earlier Internet Signaling protocol: ST-II [RFC 1819]

RSVP Design Goals

- 1. Accommodate heterogeneous receivers (different bandwidth along paths)
- 2. Accommodate different applications with different resource requirements
- 3. Make multicast a first class service, with adaptation to multicast group membership
- 4. Leverage existing multicast/unicast routing, with adaptation to changes in underlying unicast, multicast routes
- 5. Control protocol overhead to grow (at worst) linear in # receivers
- 6. Modular design for heterogeneous underlying technologies

RSVP: does not...

specify how resources are to be reserved □ rather: a mechanism for communicating needs determine routes packets will take that's the job of routing protocols □ signaling decoupled from routing interact with forwarding of packets separation of control (signaling) and data (forwarding) planes

Chapter 7: Summary

Principles

- classify multimedia applications
- identify network services applications need
- making the best of best effort service

Protocols and Architectures

- specific protocols for best-effort
- mechanisms for providing QoS
- architectures for QoS
 - multiple classes of service
 - QoS guarantees, admission control

RSVP: overview of operation

- Senders, receiver join a multicast group
 - done outside of RSVP
 - senders need not join group
- Sender-to-network signaling
 - path message: make sender presence known to routers
 - path teardown: delete sender's path state from routers
- Receiver-to-network signaling
 - reservation message: reserve resources from sender(s) to receiver
 - reservation teardown: remove receiver reservations
- Network-to-end-system signaling
 - path error
 - reservation error