

Foundations of Game Theory for Electrical and Computer Engineering

Mohammad Hossein Manshaei

manshaei@gmail.com

1394

EVOLUTIONARY STABILITY

Introduction to Evolution

- Concept related to a specific branch of Biology
- Relates to the evolution of the species in nature
- Powerful modeling tool that has received a lot of attention lately by the computer science community
- Why look at evolution in the context of Game Theory?

Game Theory Helps Biology

- Game Theory had a tremendous influence on evolutionary Biology
- Study animal behavior and use GT to understand population dynamics
- Idea:
 - Relate strategies to phenotypes of genes
 - Relate payoffs to genetic fitness
 - Strategies that do well grow, those that obtain lower payoffs die out
- Important note:
 - Strategies are *hardwired*

Examples (Bio and Eng)

- Examples:
 - Group of lions deciding whether to attack in group an antelope
 - Ants deciding to respond to an attack of a spider
 - Mobile ad hoc networks
 - TCP variations
 - P2P applications

Biology Helps Game Theory

- Evolutionary biology had a great influence on Game Theory
- Similar ideas as before, relate strategies and payoffs to genes and fitness
- Example:
 - Firms in a competitive market
 - Firms are bounded, they can't compute the best response, but have rules of thumbs and adopt hardwired (consistent) strategies
 - Survival of the fittest == rise of firms with low costs and high profits

Simplifying Assumptions

• When studying evolution through the lenses of GT, we need to make some assumptions to make our life easy

- We can relax these assumptions later on

- I. Within species competition
 - We assume no mixture of population: ants with ants, lions with lions
- 2. Asexual reproduction
 - We assume no gene redistribution

Evolutionary Game Theory <u>A Simple Model</u>

- We will look at simple games at first
 - Two player symmetric games: all players have the same strategies and the same payoff structure
- We will assume random tournaments
 - In a large population of individuals, we pick two individuals at random and we make them play the symmetric game
 - The player adopting the strategy yielding higher payoff will survive (and eventually gain new elements) whereas the player who "lost" the game will die out

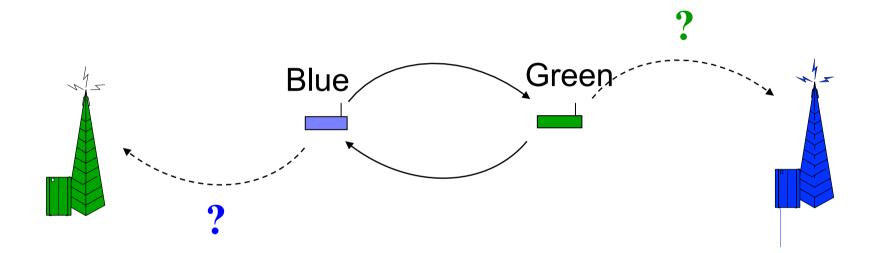
Evolutionary Game Theory <u>A Simple Model</u>

- Assume a large population of players with hardwired strategies
- We suppose the entire population play strategy s
- We then assume a <u>mutation</u> happens, and a small group of individuals start playing strategy s'
- The question we will ask is whether the mutants will survive and grow or if they will eventually die out

Evolutionary Game Theory <u>A Simple Model</u>

- Study the existence of Evolutionarily Stable (ES) strategies
- Note:
 - With our assumptions we start with a large fraction of players adopting strategy s and a small portion using strategy s'
 - In random matching, the probability for a player using s to meet another player using s is high, whereas meeting a player using s' is low

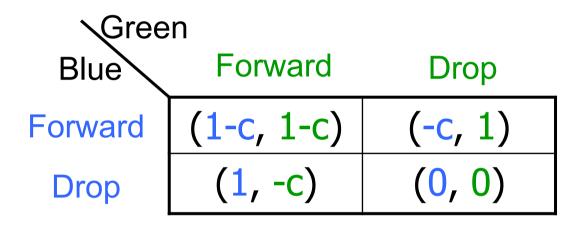
The Forwarder's Dilemma: A Practical Example



Forwarder Game

• Reward for packet reaching the destination: 1

• Cost of packet forwarding: c (0 < c << 1)



- Have you already seen this game?
 - Prisoners' Dilemma

Bio Examples:

- 1. Lions hunting in a cooperative group
- 2. Ants defending the nest in a cooperative group

Forwarding Game: A Population

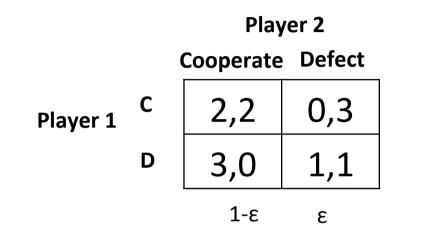
Player strategy hardwired \rightarrow C

"Spatial Game"

All players are cooperative (Forward) and get a payoff of 1-c

What happens with a mutation?

A Modified Version



 Question: <u>is "Cooperation" evolutionarily</u> <u>stable</u>?

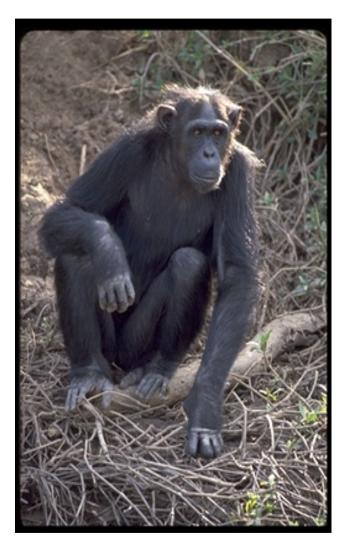
Let's Play This Game!

To Cooperate or Not?

Let's have a look to Wild Nature!

Slides are derived from Prof. Hubaux's keynote speech at GameSec 2010: http://www.gamesec-conf.org/2010/

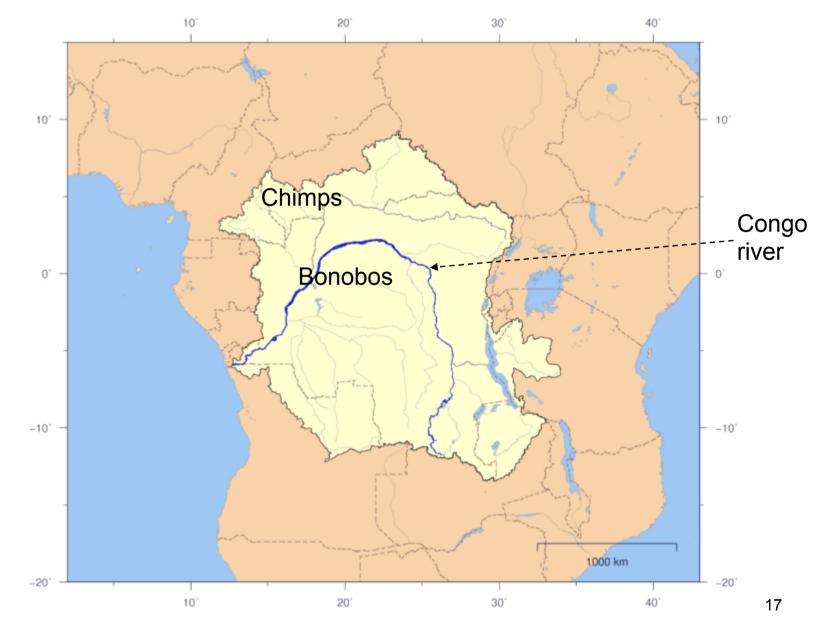
(Non)-Cooperative behavior in wireless networks: Bonobos vs Chimps



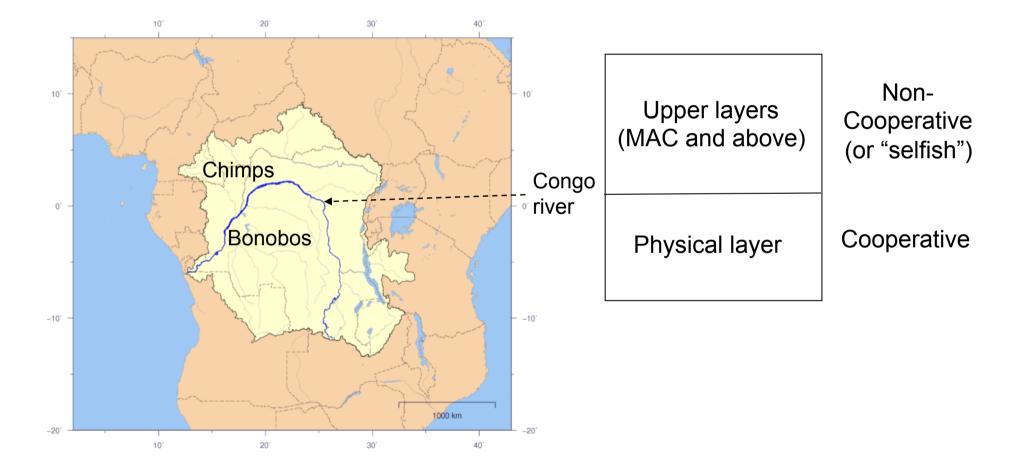
Chimpanzee www.ncbi.nlm.nih.gov

Bonobo www.bio.davidson.edu

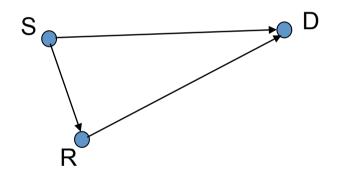
Living places (very simplified)



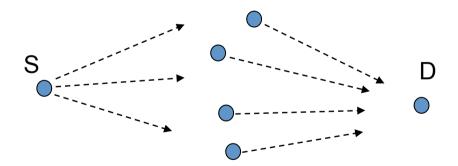
Cross-layer design...



Cooperation between wireless devices (at the physical layer)

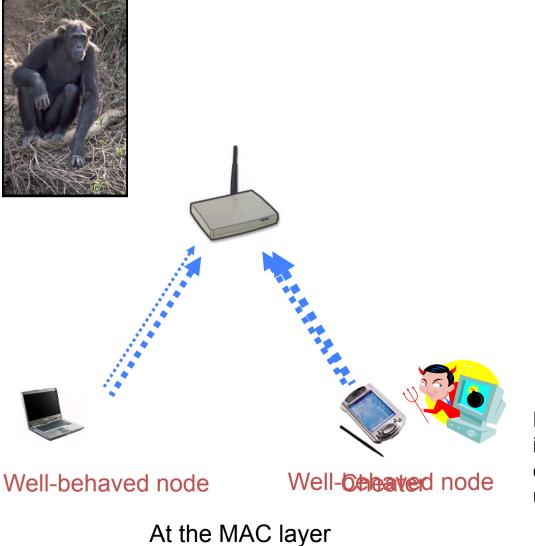


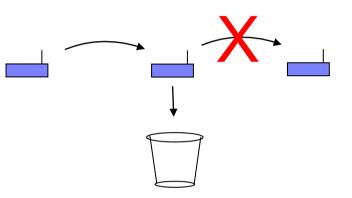
Cooperative relaying



Cooperative beamforming

Non-cooperation between wireless devices (MAC and network layer)



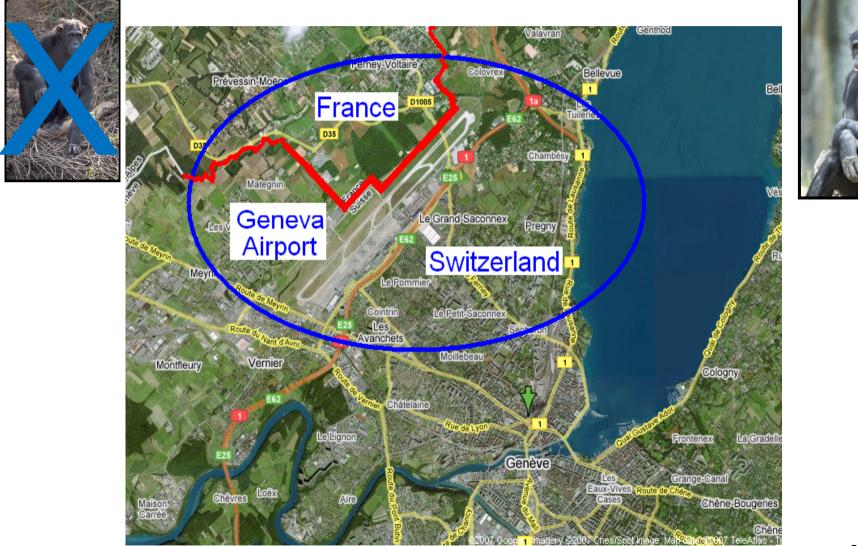


At the network layer

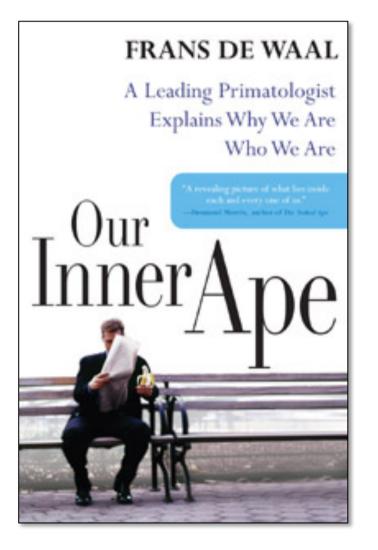
Note: sometimes non-cooperation is assumed at the physical layer; likewise, cooperation is sometimes assumed at the upper layers

20

(Non-)cooperation between wireless networks: cellular operators in shared spectrum



More on Primatology



THEAGEOF EMPATHY

NATURE'S LESSONS FOR A KINDER SOCIETY

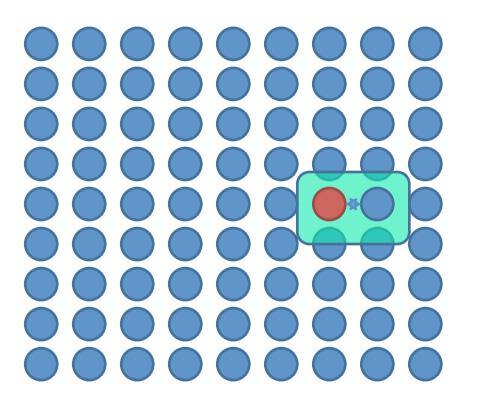
FRANS DE WAAL

Player strategy hardwired \rightarrow C

"Spatial Game"

All players are cooperative and get a payoff of 2

What happens with a mutation?



Player strategy hardwired \rightarrow C

Player strategy hardwired \rightarrow D

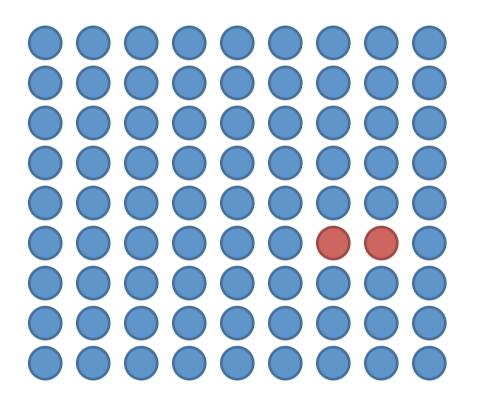
Focus your attention on this random "tournament":

- Cooperating player will obtain a payoff of 0
- Defecting player will obtain a payoff of 3

Survival of the fittest: D wins over C

Player strategy hardwired \rightarrow C

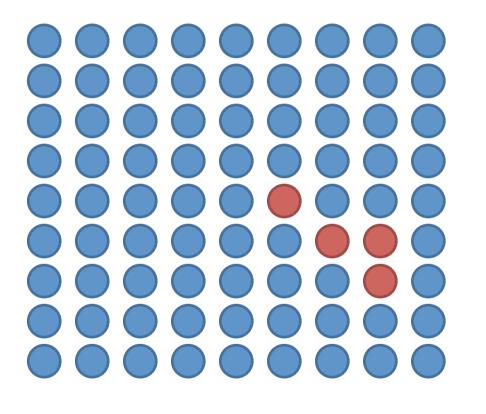
Player strategy hardwired → D

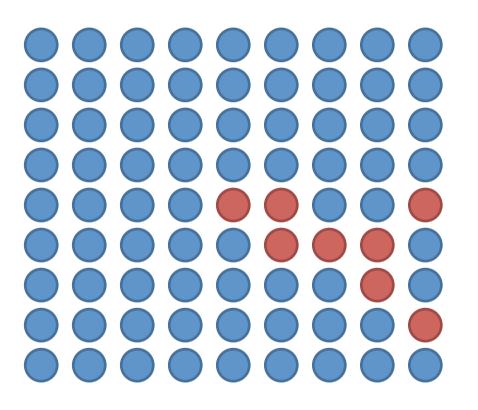


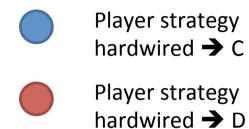
25

Player strategy hardwired \rightarrow C

Player strategy hardwired → D



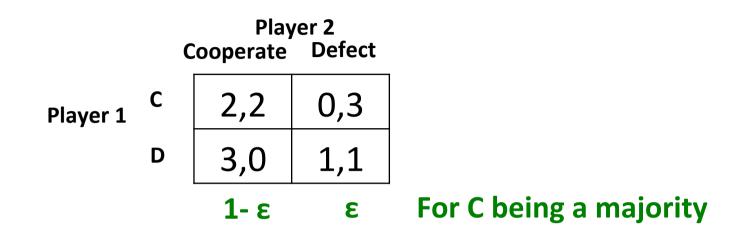




A small initial mutation is rapidly expanding instead of dying out

Let's now try to be a little bit more formal

Is Cooperation ES?

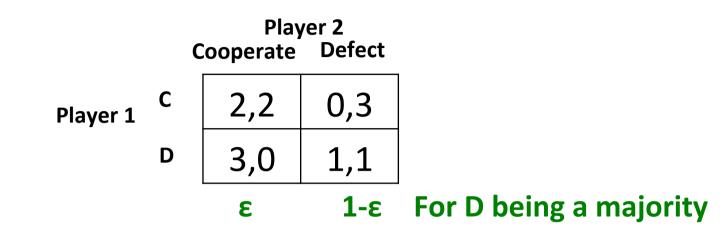


C vs. [(1-
$$\varepsilon$$
)C + ε D] → (I- ε)2 + ε 0 = 2(1- ε)
D vs. [(1- ε)C + ε D] → (I- ε)3 + ε 1 = 3(1- ε)+ ε

 $3(1-\varepsilon) + \varepsilon > 2(1-\varepsilon)$

C is not ES because the average payoff to C is lower than the average payoff to D

Is Defection ES?



D vs. $[(I - \varepsilon)D + \varepsilon C] \rightarrow (I - \varepsilon)I + \varepsilon 3 = (I - \varepsilon) + 3\varepsilon$ C vs. $[(I - \varepsilon)D + \varepsilon C] \rightarrow (I - \varepsilon)0 + \varepsilon 2 = 2\varepsilon$

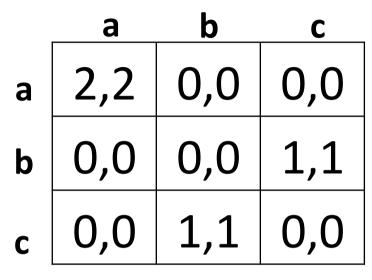
 $(I-\varepsilon)+3\varepsilon > 2\varepsilon$

D is ES: any mutation from D gets wiped out!

Observations

- Lesson I: Nature (Bad Protocols) can suck
 - It looks like animals don't cooperate (Ants and Lions), but we've seen so many documentaries showing the opposite! Why?
 - Sexual reproduction, and gene redistribution might help here
- <u>Lesson 2</u>: If a strategy is strictly dominated then it is not Evolutionarily Stable
 - The strictly dominant strategy will be a successful mutation

Another Game: 3-Strategy



- 2-player symmetric game with 3 strategies
- Is "c" ES? c vs. $[(I - \varepsilon)c + \varepsilon b] \rightarrow (I - \varepsilon) 0 + \varepsilon I = \varepsilon$ b vs. $[(I - \varepsilon)c + \varepsilon b] \rightarrow (I - \varepsilon) I + \varepsilon 0 = I - \varepsilon$ I - $\varepsilon > \varepsilon$

→ "c" is not evolutionary stable, as "b" can invade it

Is c(or b) ES?

	а	b	С
а	2,2	0,0	0,0
b	0,0	0,0	1,1
С	0,0	1,1	0,0

- So "c" is not ES, as "b" can invade
- NOTE: "b", the invader, is itself not ES!!
 - But it still avoids dying out completely

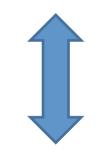
	а	b	С
а	2,2	0,0	0,0
b	0,0	0,0	1,1
С	0,0	1,1	0,0

- Is (c,c) a NE?
- No, because "b" is a profitable deviation

Observations

• <u>Lesson 3</u>:

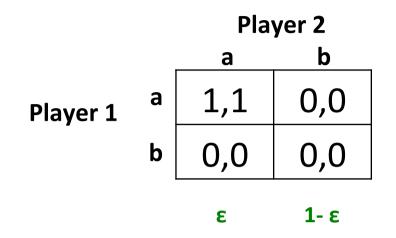
If s is **not Nash** (i.e., (s,s) is not a NE), then s is **not evolutionary stable** (ES)



If s is ES, then (s,s) is a NE

• Question: is the opposite true?

Yet Another Game (with 2 NE)



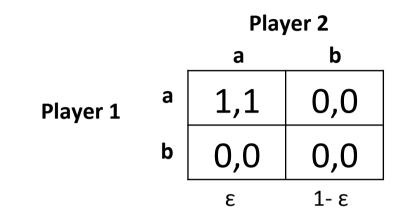
- What are the NE of this game?
 NE = (a,a) and (b,b)
- Is *b* ES?

$$b \rightarrow 0$$

a $\rightarrow (I - \varepsilon) 0 + \varepsilon I = \varepsilon$
 $\varepsilon > 0$

 \rightarrow (b,b) is a NE, but it is not ES!

Why NE but not ES?



- Why is "b" not ES despite it is a NE?
- This relates to the idea of a weak NE

\rightarrow If (s,s) is a <u>strict NE</u> then s is ES

Definition I: [Maynard Smith 1972] Bio

In a symmetric 2 player game, the pure strategy \hat{s} is ES (in **pure** strategies) if there exists an $\mathcal{E}_0 > 0$ such as:

$$(1-\varepsilon)[u(\hat{s},\hat{s})] + \varepsilon[u(\hat{s},s')] > (1-\varepsilon)[u(s',\hat{s})] + \varepsilon[u(s',s')]$$
Payoff to ES \hat{s}
Payoff to mutant s'
for all possible deviations s' and for all mutation sizes
 $\varepsilon < \varepsilon_{0}$

Definition 2 ECO or ENG

- In a symmetric 2 player game, the pure strategy \hat{s} is ES (in **pure** strategies) if:
 - A) (\hat{s}, \hat{s}) is a symmetric Nash Equilibrium $u(\hat{s}, \hat{s}) \ge u(s', \hat{s}) \quad \forall s'$

<u>and</u>

B) if
$$u(\hat{s}, \hat{s}) = u(s', \hat{s})$$
 then
 $u(\hat{s}, s') > u(s', s')$

Theorem

Definition I \Leftrightarrow Definition 2

- Let's see Def. 2 \Rightarrow Def. I <u>Sketch of proof:</u>
- Fix a \hat{s} and suppose (\hat{s}, \hat{s}) is NE, that is

 $u(\hat{s},\hat{s}) \ge u(s',\hat{s}) \quad \forall s'$

• There are two possibilities

Theorem (Sketch of Proof)

• Case I:

 $u(\hat{s},\hat{s}) > u(\hat{s},s') \ \forall s'$

the mutant dies out because she meets \hat{s} often

• Case 2:

 $u(\hat{s}, \hat{s}) = u(\hat{s}, s') \forall s'$ but

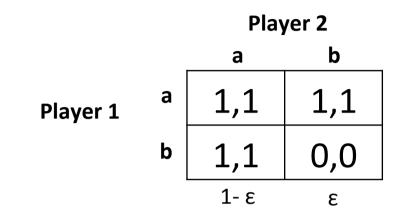
 $u(\hat{s},s') > u(s',s')$

the mutant does "ok" against \hat{s} (the mass) but badly against s' (itself)

Conclusion

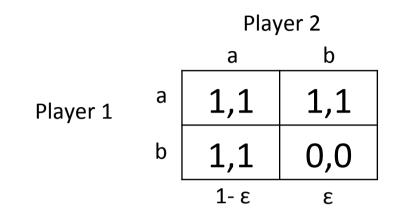
- We've seen a definition that connects
 Evolutionary Stability to Nash Equilibrium
- Basically, all we need to do is:
 - First check if (*ŝ*,*ŝ*) is a <u>symmetric</u> Nash Equilibrium
 - If it is a <u>strict</u> NE, we're done
 - Otherwise, we need to compare how ŝ performs against a mutation, and how a mutation performs against a mutation
 - If \hat{s} performs better, then we're done

Another Game



- What is the NE of this game?
 NE = (a,a)
- Is it symmetric? Easy to check
- \rightarrow a is a good candidate to be ESS
- Is (a,a) a strict NE?

Conditions to be ES



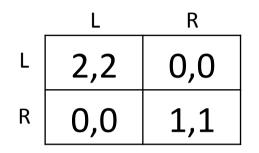
- No, it's not a strict NE
 - If you deviate to b, it's easy to notice that u(a,a)=u(b,a)
- Last Condition
 - How does u(a,b) compare to u(b,b)?
 - -U(a,b) = I > u(b,b) = 0
 - It's bigger! We're done: a is an ESS

Evolution of a Social Convention

- Evolution is often applied to social sciences
- Let's have a look at how driving to the left or right hand side of the road might evolve

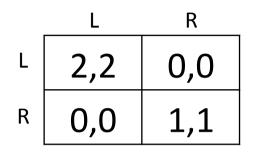
• Any clues on the interpretation of this game?

Evolution of a Social Convention



- What's liable to be evolutionary stable in this setting?
- Well, let's find the NE of this game:
 NE = (L,L) and (R,R) , which are in fact symmetric
- Are those NE <u>strict</u>?

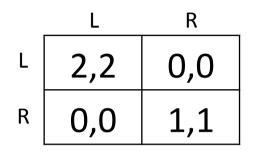
Evolution of Social Convention



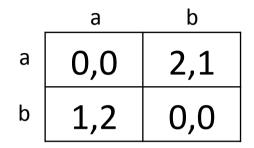
- Yes, they are strict! We're done:
 - "L" and "R" are **both** ESS

• Lesson I: We can have multiple ES conventions

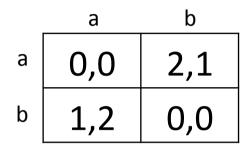
Evolution of Social Convention



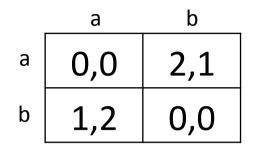
- Lesson 2: Multiple ESS <u>need not to be</u> <u>equally good</u>
- This should remind you something we've already seen
 - These are **coordination games**



- This is just a symmetric version of the Battle of the Sexes game we've studied extensively
- Biology interpretation:
 - "a" : Individuals that are aggressive
 - "b" : Individuals that are non-aggressive



- What's evolutionary stable in this game?
- Easy: look for Nash equilibria
 - We know already a lot about this game, let's go straight to the point
- There are 2 NE in pure strategies: (*a*,*b*) and (*b*,*a*)



- Are the pure strategies NE <u>symmetric</u>?
- No, and that's the problem: according to our definition of ESS, neither the pure strategy "a" not "b" can be ES
 - If you had only aggressive genes, they'd do very badly against each other, hence they could be invaded by a gentle gene
 - Of course, vice-versa is also true

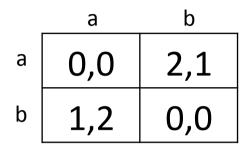
- What should we do? Look at mixed strategies!
- What's the mixed strategy NE of this game?
 - Mixed strategy NE = [(2/3, 1/3), (2/3, 1/3)]
 - Note: now it's **symmetric**
- There is an equilibrium in which 2/3 of the genes are aggressive and 1/3 are non-aggressive

New Definition

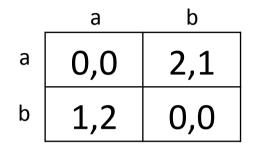
- In a symmetric 2 player game, the mixed strategy \hat{p} is ES (in mixed strategies) if:
 - A) (\hat{p}, \hat{p}) is a symmetric Nash Equilibrium $u(\hat{p}, \hat{p}) \ge u(p', \hat{p}) \quad \forall p'$

<u>and</u>

B) if
$$u(\hat{p}, \hat{p}) = u(p', \hat{p})$$
 then
 $u(\hat{p}, p') > u(p', p')$



- <u>Question: can a mixed strategy NE be</u> <u>strict?</u>
- No, by definition of a mixed NE: payoffs are equal for both pure strategies
- In our example, we need to check (for all possible mixed deviation) $u(\hat{p}, p') > u(p', p') \ \forall p'$

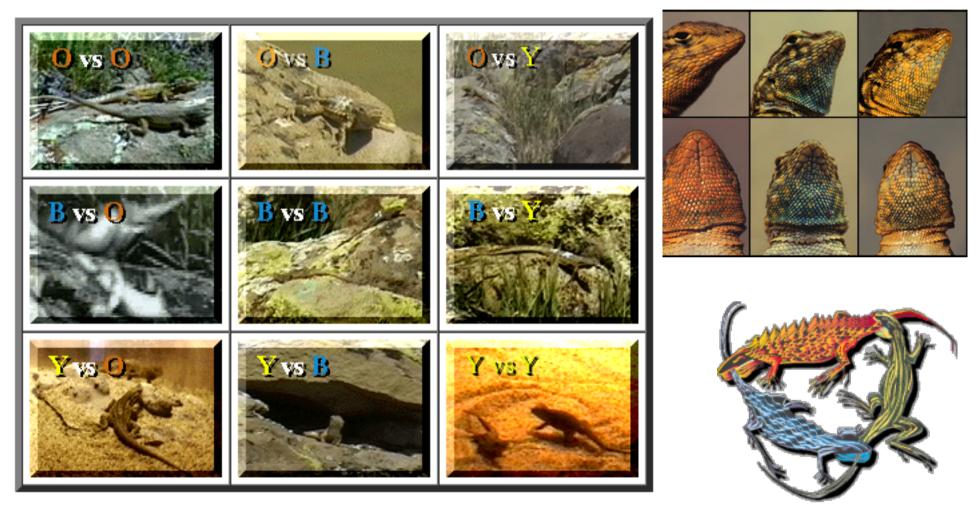


- Instead of a formal proof, let's discuss an heuristic to check that this is true
 - We've got a population in which 2/3 are aggressive and 1/3 are passive
 - Suppose there is a mutation p' that is more aggressive than p (e.g. 90% aggressive, 10% passive)
 - Since the aggressive mutation is doing very badly against herself, it would eventually die out
 - Indeed, the mutation would obtain a payoff of 0

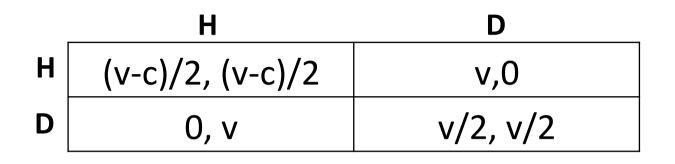
Interpretation of Mixed in ES

- But what does it mean to have a mix in nature?
 - It could mean that the gene itself is randomizing, which is plausible
 - It could be that there are actually two types surviving in the population, and this is connected to our alternative interpretation of mixed strategies

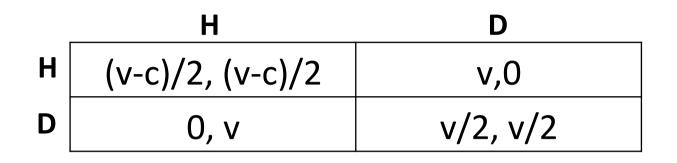
Male Reproductive Strategies: The Side-Blotched Lizard



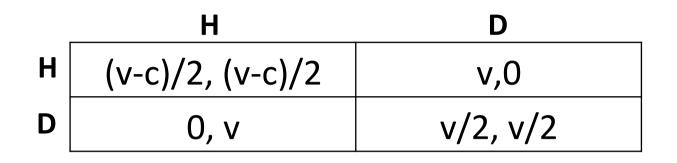
http://bio.research.ucsc.edu/~barrylab/classes/animal_behavior/MALESS.HTM



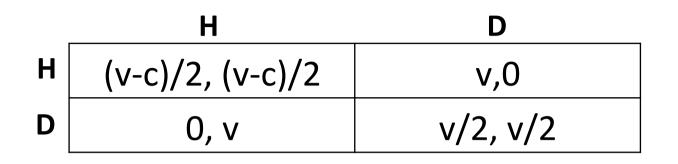
- We're now going to look at a more general game of aggression vs. non-aggression
- Note: we're still in the context of <u>within</u> <u>species competition</u>
 - So it's not a battle against two different animals, hawks and doves



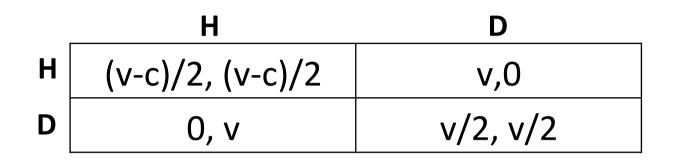
- The idea is that there is a potential battle against an aggressive vs. a non-aggressive animal
- The prize is food, and it's value is v > 0
- There's a cost for fighting, which is c > 0



- We're going to analyze ES strategies (ESS)
- We're going to be able to understand what happens to the ESS mix as we change the values of prize and costs



- Can we have an ES population of doves?
- Is (D,D) a NE?
 - No, hence "D" is not ESS
 - Indeed, a mutation of hawks against doves would be profitable in that it would obtain a payoff of v

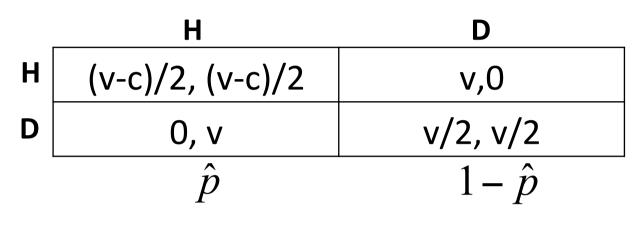


- Can we have an ES population of Hawks?
- Is (H,H) a NE?
- It is a symmetric NE if $(v-c)/2 \ge 0$
- **Case I:** $v > c \rightarrow (H,H)$ is a <u>strict</u> NE \rightarrow "H" is ESS

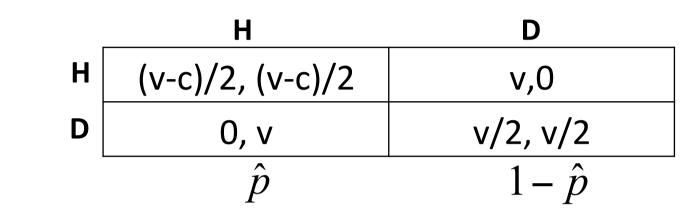


- Case 2: $v=c \rightarrow (v-c)/2 = 0 \rightarrow u(H,H) = u(D,H)$
 - Need to check how H performs against a mutation of
 - Is u(H,D) = v larger than u(D,D) = v/2?

 \rightarrow H is ESS if $v \ge c$



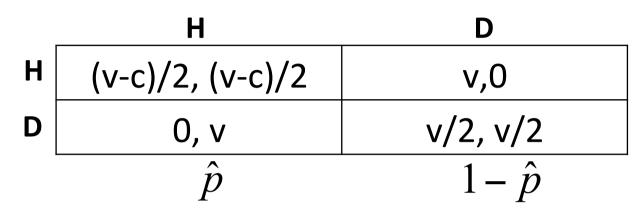
- What if c > v?
 - We know "H" is not ESS and "D" is not ESS
 - What about a mixed strategy?
- **Step I**: we need to find a symmetric mixed NE



$$u(H,\hat{p}) = \hat{p}\left(\frac{v-c}{2}\right) + (1-\hat{p})v \\ \Rightarrow \hat{p} = \frac{v}{c}$$
$$u(D,\hat{p}) = \hat{p}0 + (1-\hat{p})\frac{v}{2}$$

$$\Rightarrow \left(\frac{v}{c}, 1 - \frac{v}{c}\right)$$

64



- The mixed NE is not strict by definition
- We need to check:

 $u(\hat{p},p') > u(p',p') \ \forall p'$

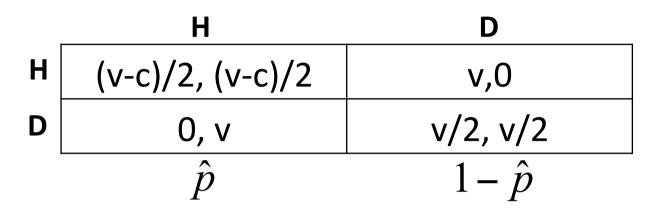
• No formal proof, same heuristic as before

Conclusions from H&D

- In case v < c we have an evolutionarily stable state in which we have v/c hawks
 - I. As $v \nearrow we$ will have more hawks in ESS
 - 2. As c \nearrow we will have more doves in ESS

• What are the payoffs?

Conclusions from H&D



Let's take the D perspective

$$E[u(D,\hat{p})] = E[u(H,\hat{p})] = 0\frac{v}{c} + \left(1 - \frac{v}{c}\right)\frac{v}{2}$$

• What happens if the cost of fighting grows?

Conclusions from H&D

- The theory we've learned today is amenable to <u>identification</u>
 - We can run experiments and <u>measure</u> the proportion of H and D
 - From observations, we can deduce the actual values of v/c
- It turns out that this theory is also able to predict outcomes that are not well-known facts