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•  Concept related to a specific branch of Biology 
•  Relates to the evolution of the species in nature 
•  Powerful modeling tool that has received a lot of 

attention lately by the computer science 
community 

•  Why look at evolution in the context of Game 
Theory? 
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•  Game Theory had a tremendous influence on 
evolutionary Biology 

•  Study animal behavior and use GT to understand 
population dynamics 

•  Idea: 
– Relate strategies to phenotypes of genes 
– Relate payoffs to genetic fitness 
–  Strategies that do well grow, those that obtain lower 

payoffs die out 
•  Important note: 

–  Strategies are hardwired 
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•  Examples: 
– Group of lions deciding whether to attack in 

group an antelope 
– Ants deciding to respond to an attack of a spider 

– Mobile ad hoc networks 
– TCP variations 
– P2P applications 
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•  Evolutionary biology had a great influence on 
Game Theory 

•  Similar ideas as before, relate strategies and 
payoffs to genes and fitness 

•  Example: 
–  Firms in a competitive market 
–  Firms are bounded, they can’t compute the best 

response, but have rules of thumbs and adopt 
hardwired (consistent) strategies 

è Survival of the fittest == rise of firms with low costs 
and high profits 
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•  When studying evolution through the lenses of 
GT, we need to make some assumptions to make 
our life easy 
– We can relax these assumptions later on 

1.  Within species competition 
–  We assume no mixture of population: ants with ants, 

lions with lions 
2.  Asexual reproduction 

–  We assume no gene redistribution 
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•  We will look at simple games at first 
– Two player symmetric games: all players have the same 

strategies and the same payoff structure 

•  We will assume random tournaments 
–  In a large population of individuals, we pick two 

individuals at random and we make them play the 
symmetric game 

– The player adopting the strategy yielding higher payoff 
will survive (and eventually gain new elements) 
whereas the player who “lost” the game will die out 
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•  Assume a large population of players with 
hardwired strategies 

•  We suppose the entire population play strategy s	


•  We then assume a mutation happens, and a small 

group of individuals start playing strategy s’	


•  The question we will ask is whether the 

mutants will survive and grow or if they 
will eventually die out 
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•  Study the existence of Evolutionarily Stable 
(ES) strategies 

•  Note: 
– With our assumptions we start with a large 

fraction of players adopting strategy s and a 
small portion using strategy s’	



–   In random matching, the probability for a player 
using s to meet another player using s is high, 
whereas meeting a player using s’ is low 
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•  Reward for packet reaching the destination: 1 
•  Cost of packet forwarding:  c (0 < c << 1) 

(1-c, 1-c) (-c, 1) 
(1, -c) (0, 0) 

Blue 
Green 

Forward 

Drop 

Forward Drop 

•  Have	
  you	
  already	
  seen	
  this	
  game?	
  
•  Prisoners’	
  Dilemma	
  

Bio	
  Examples:	
  
1.  Lions	
  hun?ng	
  in	
  a	
  coopera?ve	
  group	
  
2.  Ants	
  defending	
  the	
  nest	
  in	
  a	
  coopera?ve	
  group	
  

	
  



Player	
  strategy	
  
hardwired	
  è	
  C	
  

“Spa%al	
  Game”	
  

All	
  players	
  are	
  coopera?ve	
  	
  
(Forward)	
  and	
  get	
  a	
  payoff	
  of	
  1-­‐c	
  
	
  
	
  
What	
  happens	
  with	
  a	
  
muta?on?	
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•  Question: is “Cooperation” evolutionarily 
stable? 

2,2	
   0,3	
  
3,0	
   1,1	
  

C	
  

D	
  

Cooperate	
   Defect	
  

1-­‐ε	
   ε	
  

Player	
  1	
  

Player	
  2	
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Slides	
  are	
  derived	
  from	
  Prof.	
  Hubaux’s	
  keynote	
  speech	
  at	
  GameSec	
  2010:	
  
hTp://www.gamesec-­‐conf.org/2010/	
  
	
  



Bonobo Chimpanzee	
  
www.ncbi.nlm.nih.gov	
  	
   www.bio.davidson.edu  
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Bonobos 

Chimps 
Congo 
river 
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Bonobos 

Chimps Congo 
river 

Upper layers  
(MAC and above) 

Physical layer 
 

Cooperative 

Non- 
Cooperative 
(or “selfish”) 
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Cooperative relaying 

Cooperative beamforming 
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Well-behaved node Cheater Well-behaved node 

At the MAC layer 

At the network layer 

X 

Note: sometimes non-cooperation 
is assumed at the physical layer; likewise,  
cooperation is sometimes assumed at the 
upper layers 
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Player	
  strategy	
  
hardwired	
  è	
  C	
  

“Spa%al	
  Game”	
  

All	
  players	
  are	
  coopera?ve	
  
and	
  get	
  a	
  payoff	
  of	
  2	
  
	
  
	
  
What	
  happens	
  with	
  a	
  
muta?on?	
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Player	
  strategy	
  
hardwired	
  è	
  C	
  

Focus	
  your	
  aTen?on	
  on	
  this	
  
random	
  “tournament”:	
  
	
  
• 	
  Coopera?ng	
  player	
  will	
  obtain	
  
a	
  payoff	
  of	
  0	
  
• 	
  Defec?ng	
  player	
  will	
  obtain	
  a	
  
payoff	
  of	
  3	
  
	
  
Survival	
  of	
  the	
  fiTest:	
  
D	
  wins	
  over	
  C	
  

Player	
  strategy	
  
hardwired	
  è	
  D	
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Player	
  strategy	
  
hardwired	
  è	
  C	
  

Player	
  strategy	
  
hardwired	
  è	
  D	
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Player	
  strategy	
  
hardwired	
  è	
  C	
  

Player	
  strategy	
  
hardwired	
  è	
  D	
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Player	
  strategy	
  
hardwired	
  è	
  C	
  

Player	
  strategy	
  
hardwired	
  è	
  D	
  

A	
  small	
  ini?al	
  muta?on	
  is	
  
rapidly	
  expanding	
  instead	
  of	
  
dying	
  out	
  
	
  
	
  
Let’s	
  now	
  try	
  to	
  be	
  a	
  liTle	
  bit	
  
more	
  formal	
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C vs. [(1-ε)C + εD] à (1-ε)2 + ε0 = 2(1-ε) 
D vs. [(1-ε)C + εD] à (1-ε)3 + ε1 = 3(1-ε)+ ε 

 
3(1-ε)+ ε > 2(1-ε) 
 
è C is not ES because the average payoff to C is lower than 

the average payoff to D 
 

2,2	
   0,3	
  
3,0	
   1,1	
  

C	
  

D	
  

Cooperate	
   Defect	
  

Player	
  1	
  

Player	
  2	
  

1-­‐	
  ε	
   ε	
   For	
  C	
  being	
  a	
  majority	
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D vs. [(1-ε)D + εC] à (1-ε)1 + ε3 = (1-ε)+3ε 
C vs. [(1-ε)D + εC] à (1-ε)0 + ε2 = 2 ε 

 
(1-ε)+3ε > 2 ε 
 
è D is ES: any mutation from D gets wiped out! 

2,2	
   0,3	
  
3,0	
   1,1	
  

C	
  

D	
  

Cooperate	
   Defect	
  

Player	
  1	
  

Player	
  2	
  

ε	
   1-­‐ε	
   For	
  D	
  being	
  a	
  majority	
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•  Lesson 1: Nature (Bad Protocols) can suck 
–  It looks like animals don’t cooperate (Ants and Lions), 

but we’ve seen so many documentaries showing the 
opposite! Why? 

–  Sexual reproduction, and gene redistribution might 
help here 

•  Lesson 2: If a strategy is strictly dominated then 
it is not Evolutionarily Stable 
– The strictly dominant strategy will be a successful 

mutation 

30 



•  2-player symmetric game with 3 strategies 
 

•  Is “c” ES? 
c vs. [(1-ε)c + εb] à (1-ε) 0 + ε 1 = ε 
b vs. [(1-ε)c + εb] à (1-ε) 1 + ε 0 = 1- ε 
1- ε > ε  
 
è “c” is not evolutionary stable, as “b” can invade it 

2,2	
   0,0	
   0,0	
  
0,0	
   0,0	
   1,1	
  
0,0	
   1,1	
   0,0	
  

a	
  

b	
  

c	
  

a	
   b	
   c	
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•  So “c” is not ES, as “b” can invade 

•  NOTE: “b”, the invader, is itself not ES!! 
– But it still avoids dying out completely 

2,2	
   0,0	
   0,0	
  
0,0	
   0,0	
   1,1	
  
0,0	
   1,1	
   0,0	
  

a	
  

b	
  

c	
  

a	
   b	
   c	
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•  Is (c,c) a NE? 
•  No, because “b” is a profitable deviation 

2,2	
   0,0	
   0,0	
  
0,0	
   0,0	
   1,1	
  
0,0	
   1,1	
   0,0	
  

a	
  

b	
  

c	
  

a	
   b	
   c	
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•  Lesson 3: 
 If s is not Nash (i.e., (s,s)  is not a NE),  
then s is not evolutionary stable (ES) 

 
 
 
 

 If s is ES, then (s,s) is a NE 
 
 

•  Question: is the opposite true? 
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•  What are the NE of this game? 
–  NE = (a,a) and (b,b) 

•  Is b ES? 

b à 0 
a à (1-ε) 0 + ε 1 = ε  
ε > 0  
 
 è (b,b) is a NE, but it is not ES! 

1,1	
   0,0	
  
0,0	
   0,0	
  

a	
  

b	
  

a	
   b	
  

ε	
   1-­‐	
  ε	
  

Player	
  1	
  

Player	
  2	
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•  Why is “b” not ES despite it is a NE? 
•  This relates to the idea of a weak NE 

è If (s,s) is a strict NE then s is ES  

1,1	
   0,0	
  
0,0	
   0,0	
  

a	
  

b	
  

a	
   b	
  

ε	
   1-­‐	
  ε	
  

Player	
  1	
  

Player	
  2	
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In a symmetric 2 player game, the pure strategy ŝ is 
ES (in pure strategies) if there exists anε0 > 0  
such as: 

for all possible deviations s’ and for all mutation sizes 
ε < ε0 

[ ] [ ] [ ] [ ]),()ˆ,()1(),ˆ()ˆ,ˆ()1( ssussussussu ʹ′ʹ′+ʹ′−>ʹ′+− εεεε

Payoff	
  to	
  ES	
  ŝ	
   Payoff	
  to	
  mutant	
  s’	
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•  In a symmetric 2 player game, the pure 
strategy ŝ is ES (in pure strategies) if: 
 A) 

 

and 
 

 B) 

sssussu
ss

ʹ′∀ʹ′≥    )ˆ,()ˆ,ˆ(
mEquilibriuNash  symmetric a is  )ˆ,ˆ(

),(),ˆ(
 then )ˆ,()ˆ,ˆ( if

ssussu
ssussu
ʹ′ʹ′>ʹ′

ʹ′=

38 



Definition 1          Definition 2 

•  Let’s see Def. 2       Def. 1 
Sketch of proof: 

•  Fix a ŝ and suppose (ŝ,ŝ) is NE, that is  

•  There are two possibilities 

€ 

⇔

sssussu ʹ′∀ʹ′≥    )ˆ,()ˆ,ˆ(€ 

⇒
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•  Case 1: 

 the mutant dies out because she meets ŝ often 
•  Case 2: 

 the mutant does “ok” against ŝ (the mass) but 
badly against s’ (itself) 

€ 

u(ˆ s , ˆ s ) > u(ˆ s , " s )  ∀ " s 

),(),ˆ(
but    ),ˆ()ˆ,ˆ(

ssussu
sssussu

ʹ′ʹ′>ʹ′

ʹ′∀ʹ′=
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•  We’ve seen a definition that connects 
Evolutionary Stability to Nash Equilibrium 

•  Basically, all we need to do is: 
– First check if (ŝ,ŝ) is a symmetric Nash Equilibrium 
–  If it is a strict NE, we’re done 
– Otherwise, we need to compare how ŝ performs 

against a mutation, and how a mutation performs 
against a mutation 

–  If ŝ performs better, then we’re done 
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•  What is the NE of this game? 
– NE = (a,a) 

•  Is it symmetric? Easy to check 
è a is a good candidate to be ESS 
•  Is (a,a) a strict NE? 

1,1	
   1,1	
  
1,1	
   0,0	
  

a	
  

b	
  

a	
   b	
  

ε	
  1-­‐	
  ε	
  

Player	
  1	
  

Player	
  2	
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•  No, it’s not a strict NE 
–  If you deviate to b, it’s easy to notice that  

u(a,a)=u(b,a) 
•  Last Condition 

– How does u(a,b) compare to u(b,b)? 
– U(a,b) = 1 > u(b,b) = 0 
–  It’s bigger! We’re done: a is an ESS 

1,1	
   1,1	
  
1,1	
   0,0	
  

a	
  

b	
  

a	
   b	
  

ε	
  1-­‐	
  ε	
  

Player	
  1	
  

Player	
  2	
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•  Evolution is often applied to social sciences 
•  Let’s have a look at how driving to the left or 

right hand side of the road might evolve 

•  Any clues on the interpretation of this game? 

2,2	
   0,0	
  
0,0	
   1,1	
  

L	
  

R	
  

L	
   R	
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Player	
  1	
  



•  What’s liable to be evolutionary stable in this 
setting? 

•  Well, let’s find the NE of this game: 
– NE = (L,L) and (R,R) , which are in fact symmetric 

•  Are those NE strict? 

2,2	
   0,0	
  
0,0	
   1,1	
  

L	
  

R	
  

L	
   R	
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•  Yes, they are strict! We’re done: 
– “L” and “R” are both ESS 

•  Lesson 1: We can have multiple ES conventions 

2,2	
   0,0	
  
0,0	
   1,1	
  

L	
  

R	
  

L	
   R	
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•  Lesson 2: Multiple ESS need not to be 
equally good 

•  This should remind you something we’ve 
already seen 
– These are coordination games 

2,2	
   0,0	
  
0,0	
   1,1	
  

L	
  

R	
  

L	
   R	
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•  This is just a symmetric version of the Battle 
of the Sexes game we’ve studied extensively 
 

•  Biology interpretation: 
– “a” : Individuals that are aggressive 
– “b” : Individuals that are non-aggressive 

0,0	
   2,1	
  
1,2	
   0,0	
  

a	
  

b	
  

a	
   b	
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•  What’s evolutionary stable in this game? 
•  Easy: look for Nash equilibria 

– We know already a lot about this game, let’s go 
straight to the point 

•  There are 2 NE in pure strategies:  
(a,b) and (b,a) 

0,0	
   2,1	
  
1,2	
   0,0	
  

a	
  

b	
  

a	
   b	
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•  Are the pure strategies NE symmetric? 
•  No, and that’s the problem: according to our 

definition of ESS, neither the pure strategy “a” not 
“b” can be ES 
–  If you had only aggressive genes, they’d do very badly 

against each other, hence they could be invaded by a 
gentle gene 

– Of course, vice-versa is also true 

0,0	
   2,1	
  
1,2	
   0,0	
  

a	
  

b	
  

a	
   b	
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•  What should we do? Look at mixed strategies! 
•  What’s the mixed strategy NE of this game? 

– Mixed strategy NE = [ (2/3, 1/3) , (2/3 , 1/3) ] 
– Note: now it’s symmetric 

•  There is an equilibrium in which 2/3 of the genes 
are aggressive and 1/3 are non-aggressive 

0,0	
   2,1	
  
1,2	
   0,0	
  

a	
  

b	
  

a	
   b	
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•  In a symmetric 2 player game, the mixed 
strategy    is ES (in mixed strategies) if: 
 A) 

 
and 
 

 B) 

pppuppu
pp

ʹ′∀ʹ′≥    )ˆ,()ˆ,ˆ(
mEquilibriuNash  symmetric a is  )ˆ,ˆ(

),(),ˆ(
 then )ˆ,()ˆ,ˆ( if

ppuppu
ppuppu
ʹ′ʹ′>ʹ′

ʹ′=
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•  Question: can a mixed strategy NE be 
strict? 

•  No, by definition of a mixed NE: payoffs are 
equal for both pure strategies 

•  In our example, we need to check (for all 
possible mixed deviation) 

0,0	
   2,1	
  
1,2	
   0,0	
  

a	
  

b	
  

a	
   b	
  

pppuppu ʹ′∀ʹ′ʹ′>ʹ′   ),(),ˆ(
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•  Instead of a formal proof, let’s discuss an heuristic to check 
that this is true 
–  We’ve got a population in which 2/3 are aggressive and 1/3 are 

passive 
–  Suppose there is a mutation p’ that is more aggressive than p 

(e.g. 90% aggressive, 10% passive) 
–  Since the aggressive mutation is doing very badly against herself, 

it would eventually die out 
–  Indeed, the mutation would obtain a payoff of 0 

0,0	
   2,1	
  
1,2	
   0,0	
  

a	
  

b	
  

a	
   b	
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•  But what does it mean to have a mix in 
nature? 
–  It could mean that the gene itself is randomizing, 

which is plausible 
–  It could be that there are actually two types 

surviving in the population, and this is connected 
to our alternative interpretation of mixed 
strategies 
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56 h=p://bio.research.ucsc.edu/~barrylab/classes/animal_behavior/MALESS.HTM	
  



•  We’re now going to look at a more general 
game of aggression vs. non-aggression 

•  Note: we’re still in the context of within 
species competition 
– So it’s not a battle against two different animals, 

hawks and doves  

(v-­‐c)/2,	
  (v-­‐c)/2	
   v,0	
  
0,	
  v	
   v/2,	
  v/2	
  

H	
  

D	
  

H	
   D	
  

57 



•  The idea is that there is a potential battle 
against an aggressive vs. a non-aggressive 
animal 

•  The prize is food, and it’s value is v > 0 
•  There’s a cost for fighting, which is c > 0 

(v-­‐c)/2,	
  (v-­‐c)/2	
   v,0	
  
0,	
  v	
   v/2,	
  v/2	
  

H	
  

D	
  

H	
   D	
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•  We’re going to analyze ES strategies (ESS) 
•  We’re going to be able to understand what 

happens to the ESS mix as we change the 
values of prize and costs 

(v-­‐c)/2,	
  (v-­‐c)/2	
   v,0	
  
0,	
  v	
   v/2,	
  v/2	
  

H	
  

D	
  

H	
   D	
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•  Can we have an ES population of doves? 
•  Is (D,D) a NE? 

– No, hence “D” is not ESS 
–  Indeed, a mutation of hawks against doves would 

be profitable in that it would obtain a payoff of v 

(v-­‐c)/2,	
  (v-­‐c)/2	
   v,0	
  
0,	
  v	
   v/2,	
  v/2	
  

H	
  

D	
  

H	
   D	
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•  Can we have an ES population of Hawks? 
•  Is (H,H) a NE? 
•  It is a symmetric NE if (v-c)/2 ≥ 0 

•  Case 1: v>c è (H,H) is a strict NE è “H” is ESS 

(v-­‐c)/2,	
  (v-­‐c)/2	
   v,0	
  
0,	
  v	
   v/2,	
  v/2	
  

H	
  

D	
  

H	
   D	
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•  Case 2: v=c è (v-c)/2 = 0 è u(H,H) = u(D,H) 
– Need to check how H performs against a mutation of 

D 
–  Is u(H,D) = v larger than u(D,D) = v/2? 

 
è H is ESS if v ≥ c 

(v-­‐c)/2,	
  (v-­‐c)/2	
   v,0	
  
0,	
  v	
   v/2,	
  v/2	
  

H	
  

D	
  

H	
   D	
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•  What if c > v? 
– We know “H” is not ESS and “D” is not ESS 
– What about a mixed strategy? 

•  Step 1: we need to find a symmetric mixed 
NE 

p̂ p̂1−
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•  The mixed NE is not strict by definition 
•  We need to check: 

•  No formal proof, same heuristic as before 

p̂ p̂1−

pppuppu ʹ′∀ʹ′ʹ′>ʹ′   ),(),ˆ(
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•  In case v < c we have an evolutionarily stable 
state in which we have v/c hawks 
1.  As v ↗ we will have more hawks in ESS 
2.  As c ↗ we will have more doves in ESS 

•  What are the payoffs? 
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•  Let’s take the D perspective 

•  What happens if the cost of fighting grows? 

p̂ p̂1−
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•  The theory we’ve learned today is amenable 
to identification 

–  We can run experiments and measure the 
proportion of H and D 

–  From observations, we can deduce the actual 
values of v/c 

•  It turns out that this theory is also able to 
predict outcomes that are not well-known 
facts 
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