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Let’s solve prisoners’ dilemma! 
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•  We focus on a class of games with several 
interactions, i.e., Repeated Game 

•  Our ultimate goal is to model and solve the 
problem of prisoners’ dilemma with a 
repeated interaction, examples include 
– Several real life situations such as, friendship, 

marriage, and wars. 
– Engineering Applications such as, multiple access 

protocols in wireless communications, packet 
forwarding, and jamming. 
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•  A Nash Equilibrium (s1*,s2*,…,sN*) is a  
Sub-Game Perfect Nash Equilibrium 
(SPNE) if it induces a Nash Equilibrium in 
every sub-game of the game 

•  We looked for the Nash equilibria in each of 
the sub-games, roll the payoffs back up, and 
then see what the optimal moves are higher 
up the tree (e.g., Mixed NE in the BoS Game) 
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•  2-Player game 
•  In each period of the game each chooses Fight 

(F) or Quit (Q) 
 
1.  If the other player quits first, you win a prize V 
2.  Each period in which both F, each player pays cost -c  
3.  If both quit at once they get 0 

 
(Repeated TDMA Transmission)  
 

•  Example: First World War, The Battle for 
Broadband [IEEE Spectrum, 2005]  
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Assump'ons:	
  
Ø We	
  now	
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  two	
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Ø Later	
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  will	
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  >	
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•  Two Pure-Strategy NE in this sub-game 
•  (F(2),q(2)) and (Q(2),f(2)) 
•  Payoffs are (V,0) and (0,V) 

•  Note that c (sunk costs) does not matter! 
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For (F(2),q(2)) in stage 2 (tomorrow) 
The NE is: (F(1),q(1)) 
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For (Q(2),f(2)) in stage 2 (tomorrow) 
The NE is (Q(1),f(1)) 
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•  Two SPNE (Fighter vs Quitter) 
–  [(F(1),F(2)),(q(1),q(2))]   
–  [(Q(1),Q(2)),(f(1),f(2))]  

•  Main Lesson:  If we know I am going to win 
tomorrow, then I win today 

•  Our first intuition: Rational players should 
involve fights in NE, but here one only involves 
to fight and other quits! 

•  What did we miss? 
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•  If	
  A	
  Fights	
  è	
  -­‐cp	
  +	
  V(1-­‐p)	
  
•  If	
  A	
  Quitsè	
  0p	
  +	
  0(1-­‐p)	
  

V(1-­‐p)	
  =	
  pc	
  è	
  p=V/(V+c)	
  and	
  	
  1-­‐p	
  =	
  c/(V+c)	
  
	
  
•  Mixed	
  NE	
  has	
  both	
  fight	
  with	
  probability	
  =	
  V/(V+c)	
  
•  Payoffs	
  in	
  this	
  mixed	
  NE	
  =	
  (0,0)	
  
•  Probability	
  of	
  fight	
  increases	
  in	
  V	
  and	
  decreases	
  in	
  c	
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  +	
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   1-­‐p	
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•  When we rolled back, the matrix is the same as 
the second game (last sub-game) 

•  Same payoff matrix, so … 
•  Both Fights with p=V/(V+c) è Mixed SPE [(p*, 

p*),(p*, p*)]  
è Expected payoff is 0 

•  We end up fighting in each game with probability 
of p* (in infinite horizon) 

12 



A	
  

A	
  

Q(2)	
  

A	
  

Q(3)	
  

A	
  

Q(4)	
  

13 

Q(1)	
  

F(1)	
  

f(1)	
  

F(2)	
  

F(2)	
  

F(3)	
  

F(3)	
  



A	
  Sunk	
  Cost	
  +	
   V,0	
  
0,V	
  

0,0	
  

(-­‐c	
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² Assume	
  that	
  we	
  play	
  in	
  Stage	
  “n”	
  =	
  659870	
  
²  If	
  mix	
  in	
  future	
  then	
  the	
  conWnuaWon	
  value	
  is	
  (0,0)	
  
² This	
  game	
  is	
  already	
  analyzed	
  (solved	
  for	
  mixed)	
  
² Both	
  mix	
  with	
  F	
  	
  with	
  p*=	
  V/(V+c)	
  
² And	
  the	
  fight	
  will	
  conWnue	
  ….	
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Long fight between rational players 15 



•  We could sustain fighting by players that were 
rational in a war of attrition.  
– Break the analysis up into what we might call "stage 

games"  
– Break the payoffs up into: the payoffs that are 

associated with that stage and 
•  Payoffs that are associated with the past (they're sunk, so 

they don't really matter) 
•  Payoffs that are going to come in the future from future 

equilibrium play 
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•  Friendship 
–  If you are nice to me I will nice to you 

•  Nations Relationships 
– Visa issues 

•  Exchange goods and Services 
– Change fruit with petrol 
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In ongoing relationships the promise of future 
rewards and the threat of future punishments 

may sometimes provide incentives for  
good behavior today 

 
 
Good News: Repeated interaction might get us out of 
prisoners’ dilemma 
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•  The game at the last stage is just a simple 
Prisoners’ Dilemma 

•  Then player should defect 
•  We put payoffs of tomorrow in the game of 

today and we have 

2+0,2+0	
   -­‐1+0,3+0	
  
3+0,-­‐1+0	
   0+0,0+0	
  

Coop	
  

Defect	
  

Coop	
   Defect	
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•  It is again a PD game and we have again 
unraveling from back 

•  The problem is not solved!!!! 
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•  Lame Duck Effect 

•  However, even a Finite game has some hope! 
Let’s discuss an example 
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• We	
  play	
  twice	
  
• We	
  would	
  like	
  to	
  sustain	
  (A,A)	
  CooperaWon	
  
•  But	
  (A,A)	
  is	
  not	
  a	
  NE	
  in	
  one-­‐shot	
  game	
  
•  The	
  NE	
  are	
  (B,B)	
  and	
  (C,C)	
  

•  There	
  are	
  some	
  Mixed	
  NE,	
  but	
  	
  
let’s	
  focus	
  on	
  pure	
  NE	
  

è	
  We	
  cannot	
  sustain	
  (A,A)	
  in	
  period	
  2	
   24 



•  Play A, then: 
– Play C if (A,A) was played 
– Play B otherwise 

•  Pay attention to information sets 
–  It says what to do in all 1+9 information sets (we 

are fine!)    
•  Question: Is this a SPNE? 
•  Or can we sustain Nash behavior in all 

subgames? 
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•  For each activity in the first period we make a 
new sub-game 

•  In period 2: 
– After (A,A) this strategy induces (C,C) 

•   Which is a NEJ 

– After the other choices in period 1, this strategy 
induces (B,B) 

•   Which is a NEJ 

We are fine with all subgames after the first move 
(i.e., 9 subgames) 
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•  In the whole game: 
– A à u(A,A) + u(C,C) = 4 + 3 = 7 
–  If Defect (an obvious defection, check the rest at 

homeJ): 
•  B à u (B,A) + u (B,B) = 5 + 1 = 6 

 

Temptation to defect (cheat) today ≤ 
(Value of rewards tomorrow – Value of punishment tomorrow) 
 

5 - 4 ≤ 3 – 1  à     1 ≤ 2 

è Temptation is outweighed by the difference between the 
value of the reward and the value of the punishment 
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If a “Stage Game” has more than one NE, then 
we may be able to use the prospect of playing 

different equilibria tomorrow to provide 
incentives (rewards and punishments) for 

cooperating today 
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•  There may be a problem of renegotiation 
– Between two stages they negotiate to switch to 

(C,C) è Then there is no incentive to cooperate 
in the first stage! 

– E.g., 2008 crisis (bail out or bankruptcy) 
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•  Each round we toss a coin twice and decide to 
follow the game or not 

•  Main difference: We do not know the end 
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•  The game continue with probability of δ  
(toss a coin two times) 

•  Play C then  
– Play C if no one has played D 
– Play D otherwise 
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   -­‐1,3	
  
3,-­‐1	
   0,0	
  

Coop	
  

Defect	
  

Coop	
   Defect	
  
B	
  

A	
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•  Temptation to defect (cheat) today ≤ 
(Value of rewards tomorrow – Value of punishment 
tomorrow) 
 

•  3-2 ≤  δ (u(C,C) forever – u (D,D) forever) 

Ø Why δ? 
– Because the game may end 
– You need money today! 

?	
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3-2  ≤  δ (u(C,C) forever – u (D,D) forever) 

Ø  u(D,D) forever = 0 
Ø  u(C,C) forever = 2 + 2δ + 2δ2+ 2δ3+ … 
= 2/(1-δ) 

?	
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•  Is Grim Trigger a Nash Equilibrium? 

1  ≤  [2/(1-δ)-0] δ 
 
δ ≥ 1/3  
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•  What about playing D now, then C, then D 
forever? 

•  (D,C), (C,D), (D,D), (D,D), … 
 

•  u = 3 + (-1) δ + 0 + 0 + 0 +…= 3-δ 
 

•  It is even worse comparing to all D after the 
first D (D,D,D,…) 
 

è Punishment (D,D) forever is a SPNE  
35 



We can get cooperation in Prisoner’s 
Dilemma using the Grim Trigger Strategy  

(as a SPNE) provided δ≥1/3 
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For an ongoing relationship to provide 
incentives for good behavior today, it helps 
for there to be a high probability that 

the relationship will continue  
(weight you put on the future) 
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•  Play C to start, then  
– Play C if either (C,C) or (D,D) were 

played last 
– Play D if either (C,D) or (D,C) were 

played last 

Is this a SPNE? 
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•  Temptation to defect (cheat) today ≤ 
(Value of promise tomorrow – Value of the threat 
tomorrow) 

3-2 ≤ [ (2 “forever”) – (value of “0” for tomorrow and 
then “2” forever starting the next day)] δ 
 
3-2  ≤  [2/(1-δ) – 2δ/(1-δ)] δ 
 
½ ≤ δ 
 
Shorter punishments need more weight (δ) on future 

?	
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(1-c, 1-c) (-c, 1) 
(1, -c) (0, 0) 

Blue 
Green 

Forward 

Drop 

Forward Drop 

? 

? 

Blue Green 

stage payoff 
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In the finite-horizon Repeated Forwarder’s 
Dilemma, the strategy profile (All-D, All-D) is a 

Nash equilibrium. 
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•  Finite-horizon vs. infinite-horizon games 
•  Myopic vs. long-sighted repeated game 

( )1i iu u t= +

( )
0

T

i i
t

u u t
=

=∑

( )
0

i i
t

u u t
∞

=

=∑

myopic: 

long-sighted finite: 

long-sighted infinite: 

payoff with discounting: ( )
0

t
i i

t
u u t δ

∞

=

= ⋅∑
0 1δ< ≤ is the discounting factor 
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•  usually, history-1 strategies, based on different inputs: 

–  others’ behavior: 

–  others’ and own behavior: 

–  payoff: 
 

( ) ( )1i i im t s m t−⎡ ⎤+ = ⎣ ⎦

( ) ( ) ( )1 ,i i i im t s m t m t−⎡ ⎤+ = ⎣ ⎦
( ) ( )1i i im t s u t⎡ ⎤+ = ⎣ ⎦

Example strategies in the Forwarder’s Dilemma: 

Blue (t) initial 
move 

F D strategy name 

Green (t+1) F F F AllC 
F F D Tit-For-Tat (TFT) 
D D D AllD 
F D F Anti-TFT 
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Blue strategy Green strategy 
AllD AllD 
AllD TFT 
AllD AllC 
AllC AllC 
AllC TFT 
TFT TFT 

Infinite game with discounting: ( )
0

t
i i

t
u u t δ

∞

=

= ⋅∑

Blue utility Green utility 
0 0 
1 -c 

1/(1-δ) -c/(1-δ) 
(1-c)/(1-δ) (1-c)/(1-δ) 
(1-c)/(1-δ) (1-c)/(1-δ) 
(1-c)/(1-δ) (1-c)/(1-δ) 

Discount Factor Interpretation: 
1.  The player cares more about the near term payoff than in the long term payoff 
2.  The player has no preferences, but the game ends with probability of 1-δ in each stage 
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Blue strategy Green strategy 

AllD AllD 
AllD TFT 
AllD AllC 
AllC AllC 
AllC TFT 
TFT TFT 

•  AllC receives a high payoff with itself and TFT, but 
•  AllD exploits AllC 
•  AllD performs poor with itself 
•  TFT performs well with AllC and itself, and 
•  TFT retaliates the defection of AllD 

TFT is the best strategy if δ is high enough! 

Blue utility Green utility 
0 0 
1 -c 

1/(1-δ) -c/(1-δ) 
(1-c)/(1-δ) (1-c)/(1-δ) 
(1-c)/(1-δ) (1-c)/(1-δ) 
(1-c)/(1-δ) (1-c)/(1-δ) 
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In the Repeated Forwarder’s Dilemma, if both 
players play AllD, it is a Nash equilibrium. 
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In the Repeated Forwarder’s Dilemma, both 
players playing TFT is a Nash equilibrium  

(if δ >c). 
Sketch of Proof: 
If one deviate in stage t, then its payoff is: 
(1-δ) [(1+δ+δ2 …+δt-1)(1-c)+ δt] =  
1-c+δt(c-δ) è  
Hence if “δ	
  >	
  c”	
  there	
  is	
  no	
  temptaWon	
  to	
  deviate	
  
 
Or (i.e., other approach): 
1-(1-c) ≤	
  	
  δ	
  (u(C,C)	
  forever	
  –	
  u	
  (D,D)	
  forever)	
  
c	
  ≤	
  δ	
  ((1-­‐c)/(1-­‐δ)	
  –	
  0)	
  è	
  δ	
  >	
  c	
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The Nash equilibrium sBlue = TFT and sGreen = 
TFT is Pareto-optimal  

(but sBlue = AllD and sGreen = AllD is not) ! 

Sketch of Proof: 
There is no way for a player to go above his 
normalized payoff of 1-c without hurting his 
opponent’s payoff  
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Formal Definition! 
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The minmax value is the lowest stage payoff  
that the opponents of player i can force him to  
obtain with punishments, provided that i plays  

the best response against them. 
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A payoff profile u = (u1,u2,…,un) is  
enforceable if ui ≥ ui 
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In n-player game G=(N,S,u), a payoff 
profile u is feasible if there exist 

rational, non-negative values αj such that 
for all j, we can express ui as  
Σj∈|S| αjui(j), with Σ j∈S αj = 1. 
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(2,0) (0,0) 
(0,0) (0,2) 

Blue 
Green 

•  (1,1) is a feasible payoff given that we assign 0.5  
 to the strategy profile over diagonal. 

•  (2,2) is not feasible 
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Player i’s normalized payoff is at least equal to 
Minmax value in any Nash equilibrium  

of the infinitely repeated game, 
regardless of the level of the discount factor 

Intuition: a player playing All-D will obtain a (normalized) 
payoff of at least 0 54 



Consider any n-player game G and any payoff vector  
(u1,u2,…,un). 
1.  If u is the payoff in any Nash equilibrium of the infinitely 

repeated G with average rewards, then for each player i, ui is 
enforceable. 

2.  If u is both feasible and enforceable, then u is the payoff in 
some Nash equilibrium of the infinitely repeated G with 
average rewards. 
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For every feasible payoff vector  
u = {ui}i  with ui > ui   (i.e., it is enforceable as well),  

there exists a discounting factor δ<1,  
such that for all   δ < δ < 1,  

there is a Nash equilibrium with payoff u. 
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Note that pi can obtain at least his minmax 
value in any stage (enforceable payoffs are 
always higher than the minmax payoff) 

(1-c,1-c) (-c,1) 
(1,-c) (0,0) 

Blue 
Green 
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u2	
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Feasible	
  payoffs	
  

Feasible	
  and	
  Enforceable	
  payoffs	
  (Folk	
  Theorem	
  Payoff)	
  

1	
  

1	
  

D	
  

C	
  

D	
  C	
  



If the game is long enough, the gain obtained by a player 
by deviating once is outweighed by the loss in every 
subsequent period, when loss is due to the punishment 
(minmax) strategy of the other players. 
 
Example: In infinite repeated FD, a player is deterred 
from deviating, because the short term gain obtained by 
the deviation (1 instead of 1-c) is outweighed by the risk 
of being minmaxed (for example using the Trigger 
strategy) by the other player (provided that c < δ). 
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