

Foundations of Game Theory for Electrical and Computer Engineering

Mohammad Hossein Manshaei

manshaei@gmail.com

1394

Some Formal Definitions

Dynamic Games II

- I. First Mover or Second Mover?
- 2. Zermelo Theorem
- 3. Perfect Information/Pure Strategy
- 4. Imperfect Information/Information Set
- 5. Information vs Time

First mover advantage

- Is being the first mover always good?
 - <u>Yes, sometimes</u>: as in the Cournot Stackelberg model
 - Not always, as in the Rock, Paper, Scissors game
 - Sometimes neither being the first nor the second is good

The NIM game

- We have two players
- There are two piles of stones, A and B
- Each player, in turn, decides to delete some stones from whatever pile
- The player that remains with the last stone wins

Let's play the game

The NIM game (2)

- If piles are equal \rightarrow second mover advantage
- If piles are unequal \rightarrow first mover advantage
- You'll know who will win the game from the initial setup
- You can solve through backward induction

Dynamic Games II

- I. First Mover or Second Mover?
- 2. Zermelo Theorem
- 3. Perfect Information/Pure Strategy
- 4. Imperfect Information/Information Set
- 5. Information vs Time

The Zermelo Theorem

- Consider a general 2-Player game
- We assume *perfect information*
 - Players know where they are in the game tree and how they got there
- We assume a finite game, i.e. a game-tree with a finite number of nodes
- There can be three or fewer outcomes:
 W₁ (player I wins), L₁ (player 2 wins), T (tie)

The Zermelo Theorem

The result (or solution) of this game is:

- I. Either player 1 can force a win (over player 2)
- 2. Or player 1 can force a **tie**
- 3. Or player 2 can force a loss (on player 1)

The Zermelo Theorem

- This theorem appears to be trivial:
 - -Three possible outcomes
 - -Games are subdivided in three categories:
 - Those in which, <u>whatever player 2 does</u>, player 1 can win (provided he/she plays well)
 - Those in which player 1 can always force a draw/tie
 - Those in which, player 1 is toast, and can only loose

Examples of games

• <u>NIM</u>

- Depends on number of stones in the first stage

• <u>Tic-tac-toe</u>:

- If players play correctly, you can always force a tie
- If players make wrong moves, they can loose

• <u>**Chess</u>** \rightarrow has a solution!</u>

• In fact, the theorem doesn't tell you how to play, it just tells you there is a solution!

The Zermelo Theorem proof (I)

- We're going to prove the theorem, in a sketchy way, as this is relates to backward induction
- Proof methodology:

Induction on maximum length of a game N

- We'll start with an induction hypothesis
- And we'll prove this is true for longer games

The Zermelo Theorem proof (2)

The Zermelo Theorem proof (3)

- Induction hypothesis:
 Suppose the claim is true for all games of length ≤ N
- We claim, therefore it will be true for games of length N+I
- Let's take an example

The Zermelo Theorem proof (4)

What is the maximum length of the game?

The Zermelo Theorem proof (5)

We have two **sub-games**

- The upper sub-game: follows "1" and it has length 3
- The lower sub-game: follows "1" and has length 2

The Zermelo Theorem proof (6)

- By induction hypothesis (for N=3), upper subgame has a solution, say "W₁"
- Again, by induction hypothesis (N=2), lower sub-game has a solution, say "L₁"

This game has a solution, it is a game of length 1 we know already!

A more Complex Example

- Suppose we have an array of stones, and two players
- Sequential moves, each player can delete some stones
 - Select one, delete all stones that lie above and right
- The looser is the person who ends up removing the last rock

A more Complex Example

 According to Zermelo's Theorem, this game has a solution and the advantage depends on NxM, the size of the array

• Think about it!

Dynamic Games II

- I. First Mover or Second Mover?
- 2. Zermelo Theorem
- 3. Perfect Information/Pure Strategy
- 4. Imperfect Information/Information Set
- 5. Information vs Time

FORMAL DEFINITIONS

Perfect Information Game

A game of *perfect information* is one in which at each node of the game tree, the player whose turn is to move <u>knows</u> which node she is at and <u>how</u> she got there

Pure Strategy

A <u>pure strategy</u> for player *i* in a game of perfect information is a <u>complete plan</u> of actions: it specifies which action *i* will take at each of its decision nodes

- Strategies
 - Player 2:
 [I], [r]
 - Player I:
 [U,u], [U,d]
 [D, u], [D,d]

Hey, they look redundant, but we need them!

- Note:
 - In this game it appears that player 2 may never have the possibility to play her strategies
 - This is also true for player 1!

- Backward Induction
 - Start from the end
 - "d" \rightarrow higher payoff
 - Summarize game
 - "r" \rightarrow higher payoff
 - Summarize game
 - "D" \rightarrow higher payoff

≻ BI :: {[D,d],r}

From the <u>extensive form</u> To the <u>normal form</u>

	I	r
Uu	2,4	0,2
U d	3,1	0,2
Du	1,0	1,0
D d	1,0	1,0

Wait! We will find an answer to this later.

Dynamic Games II

- I. First Mover or Second Mover?
- 2. Zermelo Theorem
- 3. Perfect Information/Pure Strategy
- 4. Imperfect Information/Information Set
- 5. Information vs Time

Let's be in the real world!

IMPERFECT INFORMATION

Brief Review

- We have seen simultaneous move games, in which players cannot observe strategies and have to reason based on the idea of best response
- We have seen sequential move games, in which observation is allowed, and players reason using backward induction
- Now, let's study a class of games in which these two approaches are blended

A Simple Dynamic Game

- Sequential move game
- Assume for a moment perfect information
- We know how to solve it using backward induction
 - Player I knows that if he chooses
 U or M, player 2 can crush him
 - Player 2 has a huge second mover advantage in the first branches of the tree

Imperfect Information

- Sequential move game
- Imperfect information
 - Player 2 cannot distinguish
 where she is on (some parts of) the tree
- If player 1 chooses D, player 2 can observe it
- If player 1 chooses U or M, player 2 doesn't know which choice was made

Information Set

- The idea is that the two internal nodes are in the same information set
 - Player 2 knows that player 1 chose whether U or M, but not which one
- How can we analyze this kind of games?

How to Solve?

- The simple backward induction argument (player 2 could always crush player 1) does not hold anymore
- Moreover, player 1 knows that player 2 cannot distinguish U or M
 - Player 1 might decide to randomize over U and M, and hope to get an expected payoff of 2
 - A payoff of 2 is better than what player 1 could ever obtain by choosing D

Information Set

 An information set of player *i* is a collection of player *i*'s decision nodes among which *i* cannot distinguish

Examples: Are these information sets?

Information Sets: Some Rules

- Rule I:A player must not be able to infer in which node she is by looking at the number of available strategies she has
- Rule 2: provided a player can recall what she did earlier on in the tree, she shouldn't be able to distinguish where she is
 - This assumption is called **perfect recall**
 - **NOTE**: perfect recall is not always realistic!

Definition: Perfect/Imperfect Information

- A game of **perfect information** is a game in which all information sets in the game tree include just one node
- A game of **imperfect information** is not a game of perfect information!

Simple Example

- The **information set** indicates that player 2 cannot observe whether player 1 moved *up* or *down*
 - Perfect information: player 2 could have chosen separately, in each node, whether to choose *left* or *right*
 - Imperfect information: player 2
 has only the choice of choosing left or right, for both nodes, since she doesn't know which one she'll be at

Solution

- There's a catch here that makes the game easy:
 - Whatever is the information set, for player 2 choosing *right* is consistently better than choosing *left*
 - This game solves out rather like when using **backward** induction

From Dynamic to Static Game

	Player Z		
	I	r	
U	2,2	-1,3	
Player 1 D	3,-1	0,0	

Dlavor 2

- Question: What game is this?
 Prisoners Dilemma
- Notice that by using information sets, we were able to represent in a tree a simultaneous move game
 - It does not really matter the time here, what matters is information

From Dynamic to Static Game

	Player 2		
	I	r	
U Player 1 D	2,2	-1,3	
	3,-1	0,0	

Diavar 2

- We don't have **redundant** strategies in the matrix
- We can't have a complete action plan when we don't know where we are in the tree
 - This implies we have to revisit our definition of strategy

Pure Strategy: A New Definition

- A **pure strategy** of player *i* is a complete plan of action: it specifies what player *i* will do at each of its *information sets*
- It looks like the same definition we saw last time, but this one involves information sets and it is more general
 - The idea remains the same: we want to transform a game tree in a matrix

Dynamic Games II

- I. First Mover or Second Mover?
- 2. Zermelo Theorem
- 3. Perfect Information/Pure Strategy
- 4. Imperfect Information/Information Set
- 5. Information vs Time

Information vs Time

- Player 2 does not know if player 1 chooses up or down
- Player 2 has just three choices
- Our goal now is to transform the game into a matrix

Information vs Time

CLAIM: If we look at the matrix above **it is not obvious** that the game tree on the left is the only possible tree that could generate the matrix

Information vs Time

action player 2 chose

CLAIM: These two games trees are **equivalent**

Observations

- What matters is **not time**, but **information**
- We would like to set-up the machinery to analyze such games and predict what it is going to happen