

Foundations of Game Theory for Electrical and Computer Engineering

Mohammad Hossein Manshaei

manshaei@gmail.com

1393

MIXED STRATEGY NASH EQUILIBRIUM: AN EXAMPLE

- We're going to look at a tennis game
- Assume two players (Federer and Nadal)
- Where Nadal is at the net

- Have a look at the payoffs
 - E.g.: if Federer chooses 'L' and Nadal guesses wrong and jumps to the 'r', Federer wins the point 80% of the time
- Is there any dominated strategy?
- Is there a *pure strategy* NE profile?

Let's find the mixed strategy NE

Lesson I: Each player's randomization is the best response to the other player's randomization

<u>Lesson 2</u>: If players are playing a mixed strategy as part of a NE, then each of the pure strategies involved in the mix must itself be a best response

- Find a mixture for Nadal and one for Federer that are in equilibrium
- TRICK:
 - To find Nadal's mix (q) I'm going to put myself in
 Federer's shoes and look at his payoffs
 - And vice-versa for Federer's mix (p)

- Federer's expected payoffs: $E\left[U_{Federer}\left(L,\left(q,1-q\right)\right)\right] = 50q + 80(1-q)$ $E\left[U_{Federer}\left(R,\left(q,1-q\right)\right)\right] = 90q + 20(1-q)$
- If Federer is mixing in this NE then the payoff to the left and to the right must be equal, they must both be best responses

- Otherwise Federer would not be mixing

- Federer's expected payoffs must be equal: $E\left[U_{Federer}\left(L,\left(q,1-q\right)\right)\right] = 50q + 80(1-q)$ $E\left[U_{Federer}\left(R,\left(q,1-q\right)\right)\right] = 90q + 20(1-q)$ $\Rightarrow 50q + 80(1-q) = 90q + 20(1-q)$ $\Rightarrow 40q = 60(1-q)$ $\Rightarrow q = 0.6$
- I was able to derive *Nadal's mixing probability*
- This is the solution to the equation in one unknown that equates Federer's payoffs in the mix

• Nadal's expected payoffs:

$$\begin{split} E\Big[U_{Nadal}\left((p,1-p),l\right)\Big] &= 50\,p + 10(1-p) \\ E\Big[U_{Nadal}\left((p,1-p),r\right)\Big] &= 20\,p + 80(1-p) \\ \Rightarrow 50\,p + 10(1-p) &= 20\,p + 80(1-p) \\ \Rightarrow 30\,p &= 70(1-p) \\ \Rightarrow p &= 0.7 \end{split} \qquad \begin{matrix} \text{50,50 \ 80,20 \ 90,10 \ 20,80 \ (1-p) \ q \ (1-p) \ (1-p)$$

Similarly, we computed Federer's mixing probability

• We found the mixed strategy NE:

Federer Nadal \rightarrow [(0.7, 0.3), (0.6, 0.4)] L R I r

• What would happen if Nadal jumped to the left more often than 0.6?

- Federer would be better of **playing the pure strategy 'R'!**

- What if he jumped less often than 0.6?
 - Federer would be **shooting to the 'L' all time!**

- Suppose a new coach teaches Nadal how to forehand, and the payoff would change accordingly
- There is still no pure strategy NE
- What would happen in this game?

- Let's first let our intuition work
- Basically Nadal is better at his forehand and when Federer shoots there, Nadal scores more often than before
- → **Direct effect**: Nadal should increase his q
- But, Federer knows Nadal is better at his forehand, hence he will shoot there less often
- → Indirect effect: Nadal should decrease his q

• Let's compute again q:

$$\begin{split} & E\Big[U_{Federer}\left(L,\left(q,1-q\right)\right)\Big] = 30q + 80(1-q) \\ & E\Big[U_{Federer}\left(R,\left(q,1-q\right)\right)\Big] = 90q + 20(1-q) \\ & \Rightarrow 30q + 80(1-q) = 90q + 20(1-q) \\ & \Rightarrow 60q = 60(1-q) \\ & \Rightarrow q = 0.5 \end{split}$$

- We see that in the end Nadal's q went down from 0.6 to 0.5!!
- The indirect effect was predominant

• Nadal's expected payoffs:

$$\begin{split} E\Big[U_{Nadal}\left(\left(p,1-p\right),l\right)\Big] &= 70\,p + 10(1-p) \\ E\Big[U_{Nadal}\left(\left(p,1-p\right),r\right)\Big] &= 20\,p + 80(1-p) \\ \Rightarrow 50\,p + 10(1-p) &= 20\,p + 80(1-p) \\ \Rightarrow 50\,p &= 70(1-p) \\ \Rightarrow p &= 7/12 = 0.5833 < 0.7 \end{split}$$

- The direct effect was predominant
- Federer will be shooting to the left with less probability

Tennis Game: Summary

- We just performed a <u>comparative statistics</u> exercise
 - We looked at a game and found an equilibrium, then we perturbed the original game and found another equilibrium and compared the two NE
- Suppose Nadal's q had not changed
 - Federer would have never shot to the left
 - But this couldn't be a mixed strategy NE
 - There was a force to put back things at equilibrium and that was the force that pulled down Nadal's q

Every Finite Game has a Mixed Strategy Nash Equilibrium

- Why is this important?
- Without knowing the existence of an equilibrium, it is difficult (perhaps meaningless) to try to understand its properties.
- Armed with this theorem, we also know that every finite game has an equilibrium, and thus we can simply try to locate the equilibria.

LET'S SEE PAYOFFS!

 We identified the <u>mixed strategy NE</u> for this game Federer Nadal
 →[(0.7, 0.3), (0.6, 0.4)] L R I r p*(I-p*) q* (I-q*)

- How do we actually <u>check</u> that this is indeed an equilibrium?
- Let's verify that in fact p* is BR(q*)
- Federer's payoffs:
 - Pure strategy L \rightarrow 50*0.6 + 80*0.4 = 62
 - Pure strategy R \rightarrow 90*0.6 + 20*0.4 = 62
 - Mix $p^* \rightarrow 0.7*62 + 0.3*62 = 62$
- Nadal's payoffs:
 - Pure Strategy I \rightarrow 50*0.7 + 10*0.3 = 38
 - Pure Strategy r \rightarrow 20*0.7 + 80*0.3 = 38
 - Mix $q^* \rightarrow 0.6^{*}38 + 0.4^{*}38 = 38$
- Federer has no strictly profitable pure-strategy deviation

Note (again): You cannot always win by playing NE

- But is this enough? There are no pure-strategy deviations, but could there be any other mixes?
- Any mixed strategy yields a payoff that is a weighted average of the pure strategy payoffs
 - This already tells us: if you didn't find any purestrategy deviations then you'll not find any other mixes that will be profitable

To check if a mixed strategy is a NE we only have to check if there are any pure-strategy profitable deviations

Discussion

• Since we're in a mixed strategy equilibrium, it must be the case that the payoffs are equal

 Indeed, if it was not the case, then you shouldn't be randomizing!!

Applied Example: Security Check at Airport

- After the security problems in the U.S. and worldwide airports due to high risks of attacks, the need for devices capable of inspecting luggage has raised considerably
- The problem is that there are not enough of such machines
- Wrong statements have been promoted by local governments:
 - If we put a check device in NY then all attacks will be shifted to Boston, but if we put a check device in Boston, the attacks will be shifted to yet another city
 - The claim was that whatever the security countermeasure, it would only shift the problem

Applied Example: Security Check at Airport

What if you **wouldn't notify** where you would actually put the check devices, which boils down to randomizing?

The hard thing to do in practice is how to mimic randomization!!

MIXED STRATEGIES NE: INTERPRETATIONS

- We already know a lot about this game
- There are two pure-strategy NE: (M,M) and (N,N)
- We know that there is a problem of **coordination**
- We know that without communication, it is possible (and quite probable) that the two players might fail to coordinate

• Player I perspective, find NE q:

$$E\left[U_1\left(M,\left(q,1-q\right)\right)\right] = 2q + 0(1-q)$$

$$E\left[U_1\left(N,\left(q,1-q\right)\right)\right] = 0q + 1(1-q)$$

• Player 2 perspective, find NE p:

$$E\Big[U_2\big((p,1-p),M\big)\Big] = 1p + 0(1-p) \\ E\Big[U_2\big((p,1-p),N\big)\Big] = 0p + 2(1-p) \Big\} 1p = 2(1-p) \Longrightarrow p = \frac{2}{3}$$

 Let's check that p=2/3 is indeed a BR for Player I:

$$E\left[U_{1}\left(M,\left(\frac{1}{3},\frac{2}{3}\right)\right)\right] = 2\frac{1}{3} + 0\frac{2}{3}$$
$$E\left[U_{1}\left(N,\left(\frac{1}{3},\frac{2}{3}\right)\right)\right] = 0\frac{1}{3} + 1\frac{2}{3}$$
$$E\left[U_{1}\left(N,\left(\frac{1}{3},\frac{2}{3}\right)\right)\right] = 0\frac{1}{3} + 1\frac{2}{3}$$

- We just found out that there is no strictly profitable pure-strategy deviation
- There is no strictly profitable mixed-strategy deviation
- The mixed strategy NE is:

Player 1 Player 2

$$\left[\left(\frac{2}{3}, \frac{1}{3}\right), \left(\frac{1}{3}, \frac{2}{3}\right)\right]$$
p 1-p q 1-q

• What are the payoffs to players when they play such a mixed strategy NE?

$$u_1, u_2 = \left(\frac{2}{3}, \frac{2}{3}\right)$$

- Why are the payoffs so low?
- What is the probability for the two players not to meet?
- → Prob(meet) = 2/3*1/3+1/3*2/3=4/9
- → I Prob(meet) = 5/9 !!!

- This results seems to confirm our intuition that "magically" achieving the pure-strategy NE would be not always possible
- So the real question is: why are those players randomizing in such a way that it is not profitable?

Mixed Strategies: Interpretation

- Rather than thinking of players actually randomizing over their strategies, we can think of them <u>holding beliefs</u> of what the other players would play
- What we've done so far is to find those beliefs that make players "indifferent" over what they play since they're going to obtain the same payoffs

The Multiple Access game

There is no strictly dominating strategy There are two Nash equilibria

Mixed Strategy Nash equilibrium

p: probability of transmit for Blue**q:** probability of transmit for Green

$$u_{blue} = p(1-q)(1-c) - pqc = p(1-c-q)$$

$$u_{green} = q(1-c-p)$$
objectives
- Blue: choose p to maximize u_{blue}
- Green: choose q to maximize u_{green}

$$p^* = 1-c, q^* = 1-c$$
is a Nash equilibrium
$$u_{green} = \frac{1-c}{1-c}$$

802.11 MAC Layer

A Practical Randomization Strategy in Wireless Networks

WiFi Networks

• N links with the same physical condition (single-collision domain):

802.11 - CSMA/CA A MAC Layer for WiFi Networks

- Sending unicast packets
 - station has to wait for DIFS before sending data
 - receiver acknowledges at once (after waiting for SIFS) if the packet was received correctly (CRC)
 - automatic retransmission of data packets in case of transmission errors

The ACK is sent right at the end of SIFS (no contention)

Inter Frame Space and CW Times: Some PHY and MAC Layer Parameters

Parameters	802.11a	802.11b	802.11b	802.11b	802.11b
		(FH)	(DS)	(IR)	(High Rate)
Slot Time (µs)	9	50	20	8	20
$SIFS~(\mu s)$	16	28	10	10	10
DIFS (μs)	34	128	50	26	50
$EIFS (\mu s)$	92.6	396	364	205 or 193	268 or 364
$CW_{min}(SlotTime)$	15	15	31	63	31
$CW_{max}(SlotTime)$	1023	1023	1023	1023	1023
Physical Data Rate (Mbps)	6 to 54	1 and 2	1 and 2	1 and 2	1, 2, 5.5, and 11

Bianchi's Model: Solution for p and π

Basically it is a system of two nonlinear equations with two variables p and π :

$$\begin{cases} p = 1 - (1 - \pi)^{N-1} \\ \text{A mixing over transmission strategy} \\ \pi = \frac{2}{1 + W_{min} + pW_{min} \sum_{k=0}^{m-1} (2p)^k} \end{cases}$$

In fact π is the mixing probability of pure strategy of transmission for each mobile user

• Try to find all NE of a game between N mobile user?