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•  We’re going to look at a tennis game 
•  Assume two players (Federer and Nadal) 
•  Where Nadal is at the net 
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Viewpoint	
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•  Have a look at the payoffs 
–  E.g.: if Federer chooses ‘L’ and Nadal guesses wrong 

and jumps to the ‘r’, Federer wins the point 80% of the 
time 

•  Is there any dominated strategy? 
•  Is there a pure strategy NE profile? 
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Let’s find the mixed strategy NE 

Lesson 1: Each player’s randomization is the best 
response to the other player’s randomization 

Lesson 2: If players are playing a mixed strategy 
as part of a NE, then each of the pure strategies 
involved in the mix must itself be a best 
response 
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•  Find a mixture for Nadal and one for Federer 
that are in equilibrium 

•  TRICK: 
– To find Nadal’s mix (q) I’m going to put myself in 

Federer’s shoes and look at his payoffs 
– And vice-versa for Federer’s mix (p) 
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•  Federer’s expected payoffs: 

•  If Federer is mixing in this NE then the payoff 
to the left and to the right must be equal, they 
must both be best responses 
– Otherwise Federer would not be mixing 

E UFederer L, q,1− q( )( )"# $%= 50q+80(1− q)

E UFederer R, q,1− q( )( )"# $%= 90q+ 20(1− q)
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•  Federer’s expected payoffs must be equal: 

•  I was able to derive Nadal’s mixing probability 
•  This is the solution to the equation in one unknown that 

equates Federer’s payoffs in the mix 

E UFederer L, q,1− q( )( )"# $%= 50q+80(1− q)

E UFederer R, q,1− q( )( )"# $%= 90q+ 20(1− q)

⇒ 50q+80(1− q) = 90q+ 20(1− q)
⇒ 40q = 60(1− q)
⇒ q = 0.6
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•  Nadal’s expected payoffs: 

•  Similarly, we computed Federer’s mixing 
probability 

E UNadal p,1− p( ), l( )"# $%= 50p+10(1− p)

E UNadal p,1− p( ), r( )"# $%= 20p+80(1− p)

⇒ 50p+10(1− p) = 20p+80(1− p)
⇒ 30p = 70(1− p)
⇒ p = 0.7
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•  We found the mixed strategy NE: 

        Federer   Nadal 
è    [(0.7, 0.3) , (0.6, 0.4)] 
         L     R       l     r 
 
•  What would happen if Nadal jumped to the left more 

often than 0.6? 
–  Federer would be better of playing the pure strategy ‘R’! 

•  What if he jumped less often than 0.6? 
–  Federer would be shooting to the ‘L’ all time! 
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•  Suppose a new coach teaches Nadal how to 
forehand, and the payoff would change 
accordingly 

•  There is still no pure strategy NE 

•  What would happen in this game? 
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•  Let’s first let our intuition work 
•  Basically Nadal is better at his forehand and when 

Federer shoots there, Nadal scores more often 
than before 

è Direct effect: Nadal should increase his q 

•  But, Federer knows Nadal is better at his 
forehand, hence he will shoot there less often 

è Indirect effect: Nadal should decrease his q 
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•  Let’s compute again q: 

•  We see that in the end Nadal’s q went down from 0.6 
to 0.5!! 

•  The indirect effect was predominant 

E UFederer L, q,1− q( )( )"# $%= 30q+80(1− q)

E UFederer R, q,1− q( )( )"# $%= 90q+ 20(1− q)

⇒ 30q+80(1− q) = 90q+ 20(1− q)
⇒ 60q = 60(1− q)
⇒ q = 0.5
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•  Nadal’s expected payoffs: 

•  The direct effect was predominant 
•  Federer will be shooting to the left with less 

probability 

E UNadal p,1− p( ), l( )"# $%= 70p+10(1− p)

E UNadal p,1− p( ), r( )"# $%= 20p+80(1− p)

⇒ 50p+10(1− p) = 20p+80(1− p)
⇒ 50p = 70(1− p)
⇒ p = 7 /12 = 0.5833< 0.7
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•  We just performed a comparative statistics 
exercise 
– We looked at a game and found an equilibrium, then 

we perturbed the original game and found another 
equilibrium and compared the two NE 

•  Suppose Nadal’s q had not changed 
–  Federer would have never shot to the left 
–  But this couldn’t be a mixed strategy NE 
– There was a force to put back things at equilibrium 

and that was the force that pulled down Nadal’s q 
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Every	
  Finite	
  Game	
  has	
  	
  
a	
  Mixed	
  Strategy	
  Nash	
  Equilibrium	
  

	
  

•  Why	
  is	
  this	
  important?	
  	
  
	
  

•  Without	
  knowing	
  the	
  existence	
  of	
  an	
  equilibrium,	
  it	
  is	
  difficult	
  
(perhaps	
  meaningless)	
  to	
  try	
  to	
  understand	
  its	
  properVes.	
  	
  
	
  

•  Armed	
  with	
  this	
  theorem,	
  we	
  also	
  know	
  that	
  every	
  finite	
  game	
  has	
  
an	
  equilibrium,	
  and	
  thus	
  we	
  can	
  simply	
  try	
  to	
  locate	
  the	
  equilibria.	
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•  We identified the mixed strategy NE for this game 
     Federer        Nadal 
è [(0.7, 0.3) , (0.6, 0.4)] 
      L      R         l       r 
      p* (1-p*)    q*   (1-q*) 
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•  How do we actually check that this is indeed an 
equilibrium? 

•  Let’s verify that in fact p* is BR(q*) 
•  Federer’s payoffs: 

–  Pure strategy L è 50*0.6 + 80*0.4 = 62 
–  Pure strategy R è 90*0.6 + 20*0.4 = 62 
–  Mix p* è 0.7*62 + 0.3*62 = 62 

•  Nadal’s payoffs: 
–  Pure Strategy l è 50*0.7 + 10*0.3 = 38 
–  Pure Strategy r è 20*0.7 + 80*0.3 = 38 
–  Mix q* è 0.6*38 + 0.4*38 = 38 

•  Federer has no strictly profitable pure-strategy deviation 
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  (again):	
  You	
  cannot	
  always	
  win	
  by	
  playing	
  NE	
  



•  But is this enough? There are no pure-strategy 
deviations, but could there be any other mixes? 

•  Any mixed strategy yields a payoff that is a 
weighted average of the pure strategy payoffs 
– This already tells us: if you didn’t find any pure-

strategy deviations then you’ll not find any other 
mixes that will be profitable 

 To check if a mixed strategy is a NE  
we only have to check if  

there are any pure-strategy profitable deviations 
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•  Since we’re in a mixed strategy equilibrium, it 
must be the case that the payoffs are equal 

•  Indeed, if it was not the case, then you 
shouldn’t be randomizing!! 
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•  After the security problems in the U.S. and worldwide 
airports due to high risks of attacks, the need for devices 
capable of inspecting luggage has raised considerably 

•  The problem is that there are not enough of such machines 

•  Wrong statements have been promoted by local 
governments: 
–  If we put a check device in NY then all attacks will be shifted to 

Boston, but if we put a check device in Boston, the attacks will 
be shifted to yet another city 

è The claim was that whatever the security countermeasure, it 
would only shift the problem 
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What if you wouldn’t notify where you would 
actually put the check devices, which boils down 
to randomizing? 

The hard thing to do in practice is  
how to mimic randomization!! 
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•  We already know a lot about this game 
•  There are two pure-strategy NE:  

(M,M) and (N,N) 
•  We know that there is a problem of coordination 
•  We know that without communication, it is possible (and 

quite probable) that the two players might fail to 
coordinate 
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•  Player 1 perspective, find NE q: 

•  Player 2 perspective, find NE p: 

E U1 M, q,1− q( )( )"# $%= 2q+ 0(1− q)

E U1 N, q,1− q( )( )"# $%= 0q+1(1− q)

&
'
(

)(
2q = (1− q)⇒ q = 1

3

E U2 p,1− p( ),M( )"# $%=1p+ 0(1− p)

E U2 p,1− p( ),N( )"# $%= 0p+ 2(1− p)

&
'
(

)(
1p = 2(1− p)⇒ p = 2

3
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•  Let’s check that p=2/3 is indeed a BR for 
Player1: 
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•  We just found out that there is no strictly 
profitable pure-strategy deviation 

è There is no strictly profitable mixed-strategy 
deviation 

•  The mixed strategy NE is: 
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•  What are the payoffs to players when they play 
such a mixed strategy NE? 

•  Why are the payoffs so low? 
•  What is the probability for the two players not to 

meet? 
è Prob(meet) = 2/3*1/3+1/3*2/3=4/9 
è 1- Prob(meet) = 5/9 !!! 
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•  This results seems to confirm our intuition 
that “magically” achieving the pure-strategy NE 
would be not always possible 

•  So the real question is: why are those players 
randomizing in such a way that it is not 
profitable? 
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•  Rather than thinking of players actually 
randomizing over their strategies, we can think 
of them holding beliefs of what the other 
players would play 

•  What we’ve done so far is to find those 
beliefs that make players “indifferent” over 
what they play since they’re going to obtain 
the same payoffs 
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Reward for successful 
transmission: 1 
 
Cost of transmission: c 
(0 < c << 1) 

There is no strictly dominating strategy 

(0, 0) (0, 1-c) 
(1-c, 0) (-c, -c) 

Blue 
Green 

Quiet 

Transmit 

Quiet Transmit 

There are two Nash equilibria 

Time-division channel 
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objectives 
–  Blue: choose p to maximize ublue 

–  Green: choose q to maximize ugreen 

(1 )(1 ) (1 )blueu p q c pqc p c q= − − − = − −
(1 )greenu q c p= − −

p * =1−c , q * =1−c

p: probability of transmit for Blue 
q: probability of transmit for Green 

is a Nash equilibrium 
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q	
  
1	
  

1	
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BRB(q)	
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802.11 MAC Layer 
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•  N links with the same physical condition (single-collision domain): 

PHY	
  Layer	
  
MAC	
  Layer	
  

P 

π	

 = Probability of Transmission 

= Probability of Collision 
= More than one transmission at the same time 
= 1 – (1- π)N-1 

 

AP	
  	
   1 

2 3 
4 

N 
N-1 

N-2 
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•  Sending unicast packets 
–  station has to wait for DIFS before sending data 
–  receiver acknowledges at once (after waiting for SIFS) if the packet 

was received correctly (CRC) 
–  automatic retransmission of data packets in case of transmission 

errors 

t 

SIFS 

DIFS 

data	
  

ACK	
  

waiting time 

other 
stations 

receiver 

sender data	
  

DIFS 

Contention 
window 

The ACK is sent right at the end of SIFS 
(no contention) 
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Basically it is a system of two nonlinear equations with two 
variables p and π: 

{ A	
  mixing	
  over	
  transmission	
  strategy	
  

In fact π is the mixing probability of pure strategy of transmission for each mobile user 
 
•  Try to find all NE of a game between N mobile user? 


