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•  So far, we have been discussing how to achieve 
NE by players selecting their pure strategies 

•  In principle, players can also randomize over 
their pure strategies 

•  Let’s see an example before being more formal 
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•  Is there any dominated strategy? 
•  What is the NE of this game? 
– Notice the cycle? 

•  Pure strategies = {R, S, P} 

0,0	   1,-‐1	   -‐1,1	  
-‐1,1	   0,0	   1,-‐1	  
1,-‐1	   -‐1,1	   0,0	  

R	  

S	  

P	  

R	   S	   P	  
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•  Claim: there is a NE if player choose with 
probability 1/3 each of his pure strategies 

•  How can we verify this is a NE? 

0,0	   1,-‐1	   -‐1,1	  
-‐1,1	   0,0	   1,-‐1	  
1,-‐1	   -‐1,1	   0,0	  

R	  

S	  

P	  

R	   S	   P	  
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•  In the RSP game, playing each strategy with 
probability 1/3 against a player doing the 
same, is a Nash Equilibrium 

•  We’ll see in a moment that this is called a 
Mixed Strategies NE 

•  Are you convinced it is indeed a BR? 
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•             is the probability that pi assigns to pure 
strategy si 

•             could be zero à in RSP: (1/2, 1/2, 0) 
•             could be one à in RSP: ‘P’ a pure strategy 

if  

Defini*on:	  Mixed	  strategies	  
A	  mixed	  strategy	  pi	  is	  a	  randomiza5on	  	  

over	  i’s	  pure	  strategies	  

)( ii sp

)( ii sp
pi (si )
pi (P) =1
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•  The pure strategies are embedded in our 
mixed strategies 

•  Question: What are the payoffs from playing 
mixed strategies? 
–  In particular, what is the expected payoff ? 
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Ø Basically, every player is mixing, hence you have to 
take the joint probabilities for a strategy 
profile to occur 

Defini*on:	  Expected	  Payoffs	  
The	  expected	  payoff	  of	  the	  mixed	  strategy	  pi	  	  

is	  the	  weighted	  average	  of	  	  
the	  expected	  payoffs	  of	  each	  of	  the	  	  

pure	  strategies	  in	  the	  mix	  of	  -i 
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•  Suppose the following mixed strategies: 
– Player 1: p = (1/5, 4/5) 
– Player 2: q = (1/2, 1/2) 

•  What is the Player 1’s expected payoff by using 
p? 

2,1	   0,0	  
0,0	   1,2	  

M	  

N	  

M	   N	  

½	   ½	  

1/5	  

4/5	  

Player	  1	  

Player	  2	  
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The expected payoffs for both players are 
computed as the weighted average of the pure 
strategies expected payoffs against the other 

player’s mix 
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The	  weighted	  average	  
must	  lie	  between	  the	  two	  
pure	  strategies	  expected	  	  

payoffs	  	  

•  Let’s focus on player 1’s expected payoff 3/5 
•  Obviously we have: 
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•  The expected payoff from mixed strategies 
must lie between the pure strategies expected 
payoffs in the mixed 

•  This simple observation turns out to be the 
key to compute mixed strategies NE 

If	  a	  mixed	  strategy	  is	  a	  best	  response	  then	  	  
each	  of	  the	  pure	  strategies	  in	  the	  mix	  	  

must	  itself	  be	  best	  responses	  
	  

è	  They	  must	  yield	  the	  same	  expected	  payoff	  
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Ø If player i's mixed strategy pi is a best response 
to the (mixed) strategies of the other players p-i, 
then, for each pure strategy si such that pi(si) > 
0, it must be the case that si is itself a best 
response to p-i 

Ø In particular, E[ui(si, p-i)] must be the same for all 
such strategies 
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o  Suppose it was not true. Then there must be at least one pure strategy 

si that is assigned positive probability by my best-response mix and that 
yields a lower expected payoff against p-i 
 

o  If there is more than one, focus on the one that yields the lowest 
expected payoff. Suppose I drop that (low-yield) pure strategy from my 
mix, assigning the weight I used to give it to one of the other (higher-
yield) strategies in the mix  
 

o  This must raise my expected payoff 
 

o  But then the original mixed strategy cannot have been a best response: 
it does not do as well as the new mixed strategy 
 

o  This is a contradiction 
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•  Player 1’s expected payoff 3/5 
•  Obviously we have: 
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×	  1/5	  

×	  4/5	  

BUT,	  what	  
about?	  

×	  1	  

×	  0	  
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•  This is the same definition of NE we’ve been 
using so far, except that we’ve been looking at 
pure strategies, and now we’ll look at mixed ones 

Defini*on:	  Mixed	  Strategies	  Nash	  Equilibrium	  
A	  mixed	  strategy	  profile	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  a	  mixed	  
strategy	  NE	  if	  for	  each	  player	  i:	  
	  	  	  	  is	  a	  BR	  to	  	  	  	  

( )**
2

*
1 ,...,, Nppp

*
ip

*
ip−
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•  Our informal lesson before implies that 

•  Let’s play a game to fix these ideas 

***   toBR a also is 0)(  if iiii pssp −⇒>
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