

Foundations of Game Theory for Electrical and Computer Engineering

Mohammad Hossein Manshaei

manshaei@gmail.com

1393

Contents

- I. The Investment Game
- 2. Coordination Games
- 3. "The Battle of the Sexes" Game
- 4. Two-person Zero-sum Games and Saddle Point
- 5. Nash Equilibrium in
 - "The Forwarder's Dilemma Game"
 - "The ISP Routing Game"
 - "The Joint Packet Forwarding Game"
 - "The Multiple Access Game"

- The players: you
- The strategies: each of you chose between investing nothing in a class project (\$0) or invest (\$10)
- Payoffs:
 - If you don't invest your payoff is \$0
 - If you invest you're going to make a net profit of \$5.
 This however requires more than 90% of the class to invest. Otherwise, you loose \$10
- No communication!

- What did you do?
 - Who invested?
 - Who did not invest?
- What is the NE in this game?

- There are **2 NE** in this game
 - All invest
 - None invest
- Let's check:
 - If everyone invests, none would have regrets, and indeed the BR would be to invest
 - If nobody invests, then the BR would be to not invest

- How did we find the NE?
 - I. We could have checked rigorously what everyone's best response would be in each case
 - 2. We can just guess and check!
- Actually, checking is easy, guessing is hard
 - What does this remind you? Can you tell anything about the complexity of finding a NE?
- Note: checking is easy when you have many players but few strategies

- What did you do in this game?
- Players: you
- Strategies: Not Invest (\$0) or Invest \$10
- Payoffs:
 - If no invest \rightarrow \$0

- If invest \$10 \rightarrow = \$5 net profit if \geq 90% invest = \$10 net profit if < 90% invest

- I want you to play the game again, no communication please!!
- What did you do?
 - Who did invest?
 - Who did not invest?
- I want you to play again...
- Where are we going to?

- We are heading toward an equilibrium
 There are certain cases in which playing converges in a natural sense to an equilibrium
- But we're going towards only one of the two equilibria!
- Is any of these two NE better than the other?

- Clearly, everyone investing is a better NE
- Nevertheless we were converging very rapidly to a bad equilibrium, where no one gets anything, in which all money is left on the table!

• How can that be?

Formally, we say that one NE *pareto dominates* the other

• Why did we end up going to a bad equilibrium?

- Remember when we started playing?
 We were more or less 50 % investing
- The starting point was already bad for the people who invested for them to lose confidence
- Then we just tumbled down
- What would have happened if we started with 95% of the class investing?

- Note also the process of converging towards the "bad" equilibrium
- It coincides with the **idea of a self-fulfilling** prediction

Provided you think other people are not going to invest, you are not going to invest.

- Does this game belong to the Prisoners' Dilemma family?
- Was there any strictly dominated strategy?

Coordination Game

- Why is this a coordination game?
- We'd like everyone to coordinate their actions and <u>invest</u>
- There are a lot of coordination problems in real life
 - Examples?

Contents

- I. The Investment Game
- 2. Coordination Games
- 3. "The Battle of the Sexes" Game
- 4. Two-person Zero-sum Games and Saddle Point
- 5. Nash Equilibrium in
 - "The Forwarder's Dilemma Game"
 - "The ISP Routing Game"
 - "The Joint Packet Forwarding Game"
 - "The Multiple Access Game"

A Trusted Third Party (TTP) could drive the crowd to a better equilibrium!

- Let's try to compare this to the Prisoners' Dilemma
- In that case, even the presence of a TTP would not help, because the strategy β would be still dominated and people would chose α no matter!
- So why a TTP works in coordination games?

- In coordination games <u>communication helps</u>!
- Indeed, a TTP is not going to impose players to adopt a strictly dominated strategy, but is just leading the crowd towards a better NE point
- In the PD game, you need to change the payoff of the game to move people's actions

- Clearly in this game what matters is coordination
- If you played this game, it is quite likely you would end-up being uncoordinated
- A little bit of leadership would make sure you coordinate

Strategic Complements

- -Investment game: the more people invest the more likely you are to invest
- -Partnership game: the more the other person does, the more likely for me to do more

Contents

- I. The Investment Game
- 2. Coordination Games
- 3. "The Battle of the Sexes" Game
- 4. Two-person Zero-sum Games and Saddle Point
- 5. Nash Equilibrium in
 - "The Forwarder's Dilemma Game"
 - "The ISP Routing Game"
 - "The Joint Packet Forwarding Game"
 - "The Multiple Access Game"

The	B	attle	e of	the	Sexes				
Going to the Movies									
Player 2									
		Μ	N	Р					
	Μ	2,1	0,0	0,-1					
Player 1	Ν	0,0	1,2	0,-1					
	Ρ	-1,0	-1,0	-2,-2					

- The "Going to the Movies" game
- A pair is meeting at the movies and have to decide which movies to watch
- How would you play this game?

- Are there any dominated strategies?
- If so, how is the game transformed?

- How do we play this game?
- Let's try it out: form a pair, write down what you would do, **without showing**!!

- Which kind of game is this?
- Does *communication* help here?
- Let's find the Nash Equilibrium of this game

- NE: (M,M) <u>and</u> (N,N)
- So it looks like a standard coordination game, with two NE
- What is the trick here?

- **Pure coordination games:** there is no conflict whether one NE is better than the other
 - E.g.: in the investment game, we all agreed that the NE with everyone investing was a "better" NE
- General coordination games: there is a source of conflict as players would agree to coordinate, but one NE is "better" for a player and not for the other

- E.g.: The Battle of the Sexes

 \rightarrow Communication might fail in this case

Contents

- I. The Investment Game
- 2. Coordination Games
- 3. "The Battle of the Sexes" Game
- 4. Two-person Zero-sum Games and Saddle Point
- 5. Nash Equilibrium in
 - "The Forwarder's Dilemma Game"
 - "The ISP Routing Game"
 - "The Joint Packet Forwarding Game"
 - "The Multiple Access Game"

Two-person Zero-sum Games

- One of the first games studied
 most well understood type of game
- Players interest are strictly opposed
 - what one player gains the other loses
 - game matrix has single entry (i.e., gain to player I)
- Intuitive solution concept
 - players maximize gains

Analyzing the Game

• Player I maximizes matrix entry, while player 2 minimizes

Solving the Game

Iterated removal of strictly dominated strategies

- Player I cannot remove any strategy (neither T or B dominates the other)
- Player 2 can remove strategy R (dominated by M)
- Player I can remove strategy T (dominated by B)
- Player 2 can remove strategy L (dominated by M)
- Solution: (B, M)
 - payoff of 2

Solving the Game

- Removal of strictly dominated strategies does not always work
- Consider the game

		Α	В	D
Player I	Α	12	-1	0
	С	5	2	2
	D	-16	0	5

Player	2
--------	---

- Strictly dominated strategy cannot help!
- Requires another solution concept

Analyzing the Game

Saddle Points

- An outcome is a saddle point if it is both less than or equal to any value in its row and greater than or equal to any value in its column
- Saddle Point Principle
 - Players should choose outcomes that are saddle points of the game
- Value of the game
 - value of saddle point outcome if it exists

- If player I believes player 2 will play B
 - player I should play best response to B (which is C)
- If player 2 believes player 1 will play C
 - player 2 should play best response to C (which is B)

Solving the Game (min-max algorithm)

- choose maximum entry in each column
- choose the minimum among these
- this is the minimax value

- choose minimum entry in each row
- choose the maximum among these
- \succ this is maximin value

if minimax == maximin, then this is the saddle point of g_{37}

Multiple Saddle Points

In general, game can have multiple saddle points

- Same payoff in *every* saddle point
 - ♦ unique value of the game
- Strategies are interchangeable
 - ♦ Example: strategies (A, B) and (C, C) are saddle points
 - ♦ Then (A, C) and (C, B) are also saddle points

Games With no Saddle Points

- What should players do?
 - resort to randomness to select strategies

Wait we will get back to this!

Contents

- I. The Investment Game
- 2. Coordination Games
- 3. "The Battle of the Sexes" Game
- 4. Two-person Zero-sum Games and Saddle Point
- 5. Nash Equilibrium in
 - "The Forwarder's Dilemma Game"
 - "The ISP Routing Game"
 - "The Joint Packet Forwarding Game"
 - "The Multiple Access Game"

The Forwarder's Dilemma

Forwarder Game

 users controlling the devices are *rational* = try to maximize their benefit

- Reward for packet reaching the destination: I
- Cost of packet forwarding: c (0 < c << 1)

(Drop, Drop) is NE

ISP Routing Games

The Joint Packet Forwarding Game

(Forward, Forward) and (Drop, Drop) are NE

The Multiple Access game

There is no strictly dominating strategy (Transmit , Quiet) and (Quiet , Transmit) are NE